WHY DOES NEGATIVE TIMES NEGATIVE BECOME POSITIVE?

This is a classic example of "knowing" is not "understanding".
Most people "KNOW" that ${ }^{-} \mathbf{3} \times \mathbf{- 4}={ }^{+} \mathbf{1 2}$ but very few can explain WHY.
I even asked some students this very question and the popular answer was simply that "IT IS THE RULE!"
I find it very sad that most "explanations" of why negative \times negative $=$ positive just do not remain in people's brains.
There are many "novel" ways such as: walking forwards (for positive) and backwards (for negative) then turning through 180° and walking backwards which results in a positive again. However these ideas rarely last long in people's minds.

One method I like to use for 12 year olds requires the following ideas:
(a) $\mathbf{3 \times 4}$ means $4+4+4$
4×3 means $3+3+3+3$
The fact that they both equal $\mathbf{1 2}$ is not the point.
3×4 and 4×3 actually mean different things but give the same result.
(b) $3 \times{ }^{-4}$ therefore means ${ }^{-} 4+-4+-4=-12$

So we could say that positive \times negative $=$ negative but I want people to remember WHY and not just remember the RULE!
(c) Students need to grasp the idea of "opposites" like ${ }^{+} \mathbf{3}$ and ${ }^{-3}$
and that ${ }^{+} \mathbf{3}+\mathbf{3}=\mathbf{0}$
(d) The next bit is a little unsatisfactory but still effective.

If we "put" a negative in front of a number, it becomes its opposite and it helps to say the word "opposite" instead of "negative".
So the opposite of ${ }^{+} \mathbf{3}$ is $-\mathbf{3}$
Also the opposite of ${ }^{-} \mathbf{3}$ is written as ${ }^{-}(\mathbf{3})$ which of course is ${ }^{+} \mathbf{3}$
(e) If we consider ${ }^{-} \mathbf{3} \times \mathbf{- 4}$ we could think of the first negative as detachable and put ${ }^{-}(3 \times-4)$ ie the opposite of (3×-4)
$=$ the opposite of $\left({ }^{-}\right.$12)

$$
={ }^{+} 12
$$

Hence ${ }^{-3} \mathbf{3} \times \mathbf{- 4}={ }^{+} \mathbf{1 2}$
We could even think of "detaching" both negatives and think of ${ }^{-} 3 \times-4$ as ${ }^{-}\left({ }^{-}(3 \times 4)\right)$ which is the opposite of the opposite of 3×4 which of course equals ${ }^{+} \mathbf{1 2}$.
This is also an effective way of realising that any EVEN number of negatives produces a POSITIVE answer and any ODD number of negatives produces a NEGATIVE answer.

For slightly older students, the following method is by far the best.
We know from the opposites idea that
${ }^{+} \mathbf{3}+{ }^{-3}=0$
so multiplying both sides by ${ }^{-} \mathbf{4}$ produces: ${ }^{-4}\left({ }^{+} \mathbf{3}+-\mathbf{3}\right)=-\mathbf{4} \times \mathbf{0}$
If we expand the bracket we get: $\quad-\mathbf{4} \times \mathbf{3}+{ }^{+} \mathbf{4} \times \mathbf{- 3}=0$
We know that ${ }^{-} \mathbf{4} \times{ }^{+} \mathbf{3}={ }^{-} \mathbf{1 2}$ so we now have the equation:

$$
-12+-4 \times-3=0
$$

but we know from the opposites idea that ${ }^{-12}+{ }^{+} \mathbf{1 2}=0$
By comparing these two equations ${ }^{-} \mathbf{4} \times{ }^{-} \mathbf{3}$ MUST BE ${ }^{+} \mathbf{1 2}$
NEGATIVE \times NEGATIVE $=$ POSITIVE

From the point of view that UNDERSTANDING is the most important goal, a numerical demonstration is often much better than a general algebraic version.

The following general method is mathematically nicer, but would not be as effective as the above.

