WHY DOES NEGATIVE TIMES NEGATIVE BECOME POSITIVE?

This is a classic example of "knowing" is not "understanding".

Most people "KNOW" that $-3 \times 4 = +12$ but very few can explain WHY. I even asked some students this very question and the popular answer was simply that "IT IS THE RULE!"

I find it very sad that most "explanations" of why negative × negative = positive just do not remain in people's brains.

There are many "novel" ways such as: walking forwards (for positive) and backwards (for negative) then turning through 180° and walking backwards which results in a positive again. However these ideas rarely last long in people's minds.

One method I like to use for 12 year olds requires the following ideas:

- (a) 3×4 means 4 + 4 + 4 4×3 means 3 + 3 + 3 + 3The fact that they both equal **12** is not the point. 3×4 and 4×3 actually mean different things but give the same result.
- (b) $3 \times \bar{4}$ therefore means $\bar{4} + \bar{4} + \bar{4} = 12$ So we could say that positive × negative = negative but I want people to remember WHY and not just remember the RULE!
- (c) Students need to grasp the idea of "opposites" like +3 and -3and that +3 + -3 = 0
- (d) The next bit is a little unsatisfactory but still effective. If we "put" a negative in front of a number, it becomes its opposite and it helps to say the word "opposite" instead of "negative". So the opposite of +3 is -3Also the opposite of -3 is written as -(-3) which of course is +3
- (e) If we consider -3×-4 we could think of the first negative as detachable and put (3×4) is the opposite of (3×4) n (~ ° ^e ([−] 12)

= the opposite of
$$(-12)$$

$$=$$
 ⁺ 12

Hence $^{-}3 \times ^{-}4 = ^{+}12$

We could even think of "detaching" both negatives and think of -3×-4 as $-(-(3 \times 4))$ which is the opposite of the opposite of 3×4 which of course equals ⁺12.

This is also an effective way of realising that any EVEN number of negatives produces a POSITIVE answer and any ODD number of negatives produces a NEGATIVE answer.

For slightly older students, the following method is by far the best. We know from the opposites idea that ⁺**3** + -3 = 0so multiplying both sides by $\overline{4}$ produces: $\overline{4}(^{+}3 + \overline{3}) = \overline{4} \times 0$ If we expand the bracket we get: $^{-4} \times ^{+3} + ^{-4} \times ^{-3}$ = 0We know that $-4 \times +3 = -12$ so we now have the equation: $12 + 4 \times 3$ 0 = but we know from the opposites idea that $^{-12}$ + ⁺12 0 By comparing these two equations -4×-3 MUST BE +12**NEGATIVE × NEGATIVE = POSITIVE**

From the point of view that UNDERSTANDING is the most important goal, a numerical demonstration is often much better than a general algebraic version.

The following general method is mathematically nicer, but would not be as effective as the above.

 $b^{+}b + b^{-}b$ We know from the opposites idea that = 0 so multiplying both sides by \bar{a} produces: $\bar{a}(b + \bar{b}) = \bar{a} \times 0$ If we expand the bracket we get: $\overline{a} \times b + \overline{a} \times b$ = 0 We know that $\bar{a} \times \bar{b} = \bar{a}b$ so we now have the equation: $ab + a \times b$ 0 = †ab = 0 By comparing these two equations $\overline{a} \times \overline{b}$ MUST BE ^{+}ab **NEGATIVE × NEGATIVE = POSITIVE**