## TRIGONOMETRIC FORMULAE.

The formula sheet for New Zealand Calculus examinations contains a multitude of trigonometric formulae and despite teachers going to a lot of trouble carefully deriving these formulae, I guarantee that $99 \%$ of students do not remember where they have come from.

The most valuable and useful one concerns the trigonometric version of Pythagoras' Theorem.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

The proof is so incredibly simple yet very few students actually can recall it when asked!
The first step is to let the hypotenuse be of length 1 unit:

$\stackrel{\boldsymbol{x}}{\text { Pythagoras' }}$ Theorem is simply $\boldsymbol{y}^{2}+\boldsymbol{x}^{2}=\boldsymbol{1}^{2}$
Substituting $y=\sin \theta$ and $x=\cos \theta$ we get $(\sin \theta)^{2}+(\boldsymbol{\operatorname { c o s } \theta})^{2}=1$

$$
\text { usually written as: } \quad \sin ^{2} \theta+\cos ^{2} \theta=1
$$

Incidentally since $\tan \boldsymbol{\theta}=\frac{\boldsymbol{y}}{\boldsymbol{x}}$ and substituting $y=\sin \theta$ and $x=\boldsymbol{\operatorname { c o s }} \theta$ this is the best way to explain clearly WHY $\boldsymbol{\operatorname { t a n } \theta} \boldsymbol{\theta} \underline{\underline{\sin \theta} \boldsymbol{\theta}}$

$$
\overline{\cos \theta}
$$

I explained in a previous article that it is time to get rid of the reciprocal trigonometric functions $(\sec x, \operatorname{cosec} x$ and $\cot x)$.
They are a relic of past centuries and of no actual use whatsoever.
If we must actually give our calculus students the derivatives of $\sin x, \cos x$ and $\tan \boldsymbol{x}$ on the formula sheet then we should just give them the following version:

| $y=f(x)$ | $\frac{d y}{d x}=f^{\prime}(x)$ |
| :---: | :---: |
| $\ln (x)$ | $\frac{1}{x}$ |
| $e^{a x}$ | $a e^{a x}$ |
| $\sin x$ | $\cos x$ |
| $\cos x$ | $-\sin x$ |
| $\tan x$ | $\frac{1}{\cos ^{2} x}$ |

There should be no mention of $\sec x, \operatorname{cosec} x$ and $\cot x$ whatsoever.
I think that the derivatives of functions such as $y=(\sin x)^{-1}$ should be simply worked out and left in terms of $\sin \boldsymbol{x}$ and $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$. eg $y=(\sin x)^{-1}$
$\frac{d y}{d x}=-1(\sin x)^{-2}(\cos x)$ $=-\frac{\cos x}{(\sin x)^{2}}$

A typical batch of very narrowly specialised formulae is:

## Products

$2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$
$2 \cos \mathrm{~A} \sin \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B})-\sin (\mathrm{A}-\mathrm{B})$
$2 \cos \mathrm{~A} \cos \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
$2 \sin \mathrm{~A} \sin \mathrm{~B}=\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$
I suspect the sole purpose of these formulae is just so we can integrate things such as:

$$
\begin{aligned}
\int 2 \cos (5 x) \cos (3 x) d x & =\int \cos (8 x)+\cos (2 x) d x \\
& =\frac{\sin (8 x)}{8}+\frac{\sin (2 x)}{2}+c
\end{aligned}
$$

Frankly the time and effort needed to derive the above formulae, especially when many people do not even do a trigonometry assessment in their courses, makes it not worthwhile to bother with them at all.
These integrals are hardly crucial to a first calculus course.

I think that the Compound Angle formulae are probably the only other useful ones which we actually need to use.

## Compound Angles

```
sin}(A\pmB)=\operatorname{sin}A\operatorname{cos}B\pm\operatorname{cos}A\operatorname{sin}
cos(A\pmB)=\operatorname{cos}A\operatorname{cos}B\mp\operatorname{sin}A\operatorname{sin}B
tan(A\pmB)=\frac{\operatorname{tan}A\pm\operatorname{tan}B}{1\mp\operatorname{tan}A\operatorname{tan}B}
```

In order to understand how to multiply and divide COMPLEX NUMBERS in polar form, we need to recognise the formulae for $\sin (\mathrm{A}+\mathrm{B})$ and $\cos (\mathrm{A}+\mathrm{B})$

Let $u=1 \operatorname{cis}(A)$ and $v=1 \operatorname{cis}(B)$

## The PRODUCT $u \times v$

$=(\cos A+i \sin A) \times(\cos B+i \sin B)$
$=\cos A \cos B+i(\sin A \cos B+\cos A \sin B)+i^{2}(\sin A \sin B)$
$=\cos A \cos B-\sin A \sin B+i(\sin A \cos B+\cos A \sin B)$
$=\quad \cos (A+B)+i \sin (A+B)$
This means that $\operatorname{cis}\left(30^{\circ}\right) \times \operatorname{cis}\left(45^{\circ}\right)=\operatorname{cis}(30+45)=\operatorname{cis}\left(75^{\circ}\right)$
Or cis $(\pi / 6) \times \operatorname{cis}(\pi / 4)=\operatorname{cis}(\pi / 6+\pi / 4)=\operatorname{cis}(7 \pi / 12)$

## The QUOTIENT $\underline{\underline{u}}$

$=\frac{(\cos A+i \sin A)}{(\cos B+i \sin B)}=\frac{(\cos A+i \sin A)}{(\cos B+i \sin B)} \times \frac{(\cos B-i \sin B)}{(\cos B-i \sin B)}$

$$
\begin{aligned}
& =\frac{\cos A \cos B+\sin A \sin B+i(\sin A \cos B-\cos A \sin B)}{\cos ^{2} B+\sin ^{2} B} \\
& =\cos (\boldsymbol{A}-\boldsymbol{B})+\boldsymbol{i} \sin (\boldsymbol{A}-\boldsymbol{B})
\end{aligned}
$$

This means that $\frac{\operatorname{cis}\left(45^{\circ}\right)}{\operatorname{cis}\left(30^{\circ}\right)}=\operatorname{cis}(45-30)=\operatorname{cis}\left(15^{\circ}\right)$

$$
\text { or } \frac{\operatorname{cis}(\pi / 4)}{\operatorname{cis}(\pi / 6)}=\operatorname{cis}(\pi / 4-\pi / 6)=\operatorname{cis}(\pi / 12)
$$

## Imagine how elated De Moivre would have felt discovering this!

Also, in order to PROVE the derivative of $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ is $\boldsymbol{y}^{\prime}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$, instead of using the usual "right hand" form of the derivative :

$$
y^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

I like to use the "two sided" form of the derivative:


The gradient of chord QR is a good approximation of the gradient of the tangent at P .
The gradient of the $\mathrm{CHORD} \mathrm{QR}=\frac{f(x+h)-f(x-h)}{2 h}$

The "two sided" version of the derivative is:

Gradient at $\mathrm{P}=\lim _{h \rightarrow 0} \frac{f(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})}{2 \boldsymbol{h}}$
If $\boldsymbol{y}=\sin \boldsymbol{x}$ then $y^{\prime}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x-h)}{2 h}$
$\begin{aligned} & \text { This is much } \\ & \text { easier for }\end{aligned} \int=\lim _{h \rightarrow 0} \frac{\sin x \cdot \cos h+\cos x \cdot \sin h-\sin x \cdot \cos h+\cos x \cdot \sin h}{2 h}$ students to follow than the traditional method.

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\ell \cos (x) \sin (h)}{\ell h} \\
& =\cos x \times \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\cos x \times \underline{1} \text { if } x \text { is in radians! }
\end{aligned}
$$

$$
(\text { Or }=\cos x \times \underline{\mathbf{0 . 0 1 7 4 5}} \text { if } \boldsymbol{x} \text { is in degrees! }) \text { see below.... }
$$

Consider: $\mathrm{L}=\lim _{\boldsymbol{h} \rightarrow 0} \frac{\sin (\boldsymbol{h})}{\boldsymbol{h}}$

## USING DEGREES :

USING RADIANS :
Let $h=0.0001$ degrees

$$
\text { Let } h=0.0001 \mathrm{rads}
$$

$\mathrm{L} \approx \sin \left(0.0001^{\circ}\right)$
0.0001
$=0.017453292$

$$
\begin{gathered}
\mathrm{L} \approx \frac{\sin \left(0.0001_{\mathrm{rad}}\right)}{0.0001} \\
=.999999999 \ldots=\mathbf{1}
\end{gathered}
$$

So, if $y=\sin (x$ degrees $)$

$$
\frac{d y}{y}=\cos (x) \times 0.01745
$$

So, if $y=\sin (x$ radians $)$

$$
\frac{d y}{d x}=\cos (x) \times \underline{1}
$$

Similarly for the derivative of $y=\cos x$
Gradient at $\mathrm{P}=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x-h)}{2 h}$
If $y=\cos x$ then $y^{\prime}=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x-h)}{2 h}$


This is a VERY good reason for using RADIANS when differentiating Trigonometric functions.
In fact, I think it is the only place that radians need to be used.

