TRIGONOMETRIC FORMULAE.

The formula sheet for New Zealand Calculus examinations contains a multitude of trigonometric formulae and despite teachers going to a lot of trouble carefully deriving these formulae, I guarantee that 99% of students do not remember where they have come from.

The most valuable and useful one concerns the trigonometric version of Pythagoras' Theorem.

$$sin^2\theta + cos^2\theta = 1$$

The proof is so incredibly simple yet very few students actually can recall it when asked!

The first step is to let the hypotenuse be of length 1 unit:

Incidentally since $\tan \theta = \underline{y}$ and substituting $y = \sin \theta$ and $x = \cos \theta$ this is the best way to explain clearly WHY $\tan \theta = \frac{\sin \theta}{\cos \theta}$ I explained in a previous article that it is time to get rid of the reciprocal trigonometric functions (*sec x, cosec x and cot x*).

They are a relic of past centuries and of no actual use whatsoever.

If we must actually give our calculus students the derivatives of sin x, cos x and tan x on the formula sheet then we should just give them the following version:

y = f(x)	$\frac{dy}{dx} = f'(x)$	There sec r
ln(x)	$\frac{1}{x}$	whatso I think
e^{ax}	ae^{ax}	function should
sin x	cos x	left in eg y
cos x	-sin x	$\frac{dy}{dx}$
tan x	$\frac{1}{\cos^2 x}$	

```
There should be no mention of

sec x, cosec x and cot x

whatsoever.

I think that the derivatives of

functions such as y = (sin x)^{-1}

should be simply worked out and

left in terms of sin x and cos x.

eg y = (sin x)^{-1}

\frac{dy}{dx} = -1 (sin x)^{-2} (cos x)

\frac{dx}{dx}

= -\frac{cos x}{(sin x)^2}
```

A typical batch of very narrowly specialised formulae is: **Products**

 $2\sin A \cos B = \sin(A + B) + \sin(A - B)$ $2\cos A \sin B = \sin(A + B) - \sin(A - B)$ $2\cos A \cos B = \cos(A + B) + \cos(A - B)$ $2\sin A \sin B = \cos(A - B) - \cos(A + B)$

I suspect the **sole purpose** of these formulae is just so we can integrate things such as:

$$\int 2\cos(5x)\cos(3x) dx = \int \cos(8x) + \cos(2x) dx$$
$$= \frac{\sin(8x)}{8} + \frac{\sin(2x)}{2} + c$$

Frankly the time and effort needed to derive the above formulae, especially when many people do not even do a trigonometry assessment in their courses, makes it not worthwhile to bother with them at all.

These integrals are hardly crucial to a first calculus course.

I think that the **Compound Angle** formulae are probably the only other useful ones which we actually need to use.

Compound Angles

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

In order to understand how to multiply and divide **COMPLEX NUMBERS** in polar form, we need to recognise the formulae for sin(A + B) and cos(A + B)

Let $u = 1 \operatorname{cis}(A)$ and $v = 1 \operatorname{cis}(B)$

The PRODUCT $u \times v$

 $= (\cos A + i \sin A) \times (\cos B + i \sin B)$ = $\cos A \cos B + i(\sin A \cos B + \cos A \sin B) + i^{2} (\sin A \sin B)$ = $\cos A \cos B - \sin A \sin B + i(\sin A \cos B + \cos A \sin B)$ = $\cos(A + B) + i \sin(A + B)$

This means that $cis(30^{\circ}) \times cis(45^{\circ}) = cis(30 + 45) = cis(75^{\circ})$ Or $cis(\pi/6) \times cis(\pi/4) = cis(\pi/6 + \pi/4) = cis(7\pi/12)$

The QUOTIENT <u>u</u>

 $= \frac{(\cos A + i\sin A)}{(\cos B + i\sin B)} = \frac{(\cos A + i\sin A)}{(\cos B + i\sin B)} \times \frac{(\cos B - i\sin B)}{(\cos B - i\sin B)}$

 $= \frac{\cos A \cos B + \sin A \sin B}{\cos^2 B + \sin^2 B} + \frac{i(\sin A \cos B - \cos A \sin B)}{\cos^2 B + \sin^2 B}$

$$= cos(A - B) + i sin(A - B)$$

This means that $\frac{cis(45^{0})}{cis(30^{0})} = cis(45 - 30) = cis(15^{0})$

or
$$\underline{cis(\pi/4)}_{cis(\pi/6)} = cis(\pi/4 - \pi/6) = cis(\pi/12)$$

Imagine how elated De Moivre would have felt discovering this!

Also, in order to PROVE the derivative of y = sin x is y' = cos x, instead of using the usual "right hand" form of the derivative :

$$y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

I like to use the "**two sided**" form of the derivative:

The gradient of chord QR is a good approximation of the gradient of the tangent at P.

The gradient of the CHORD
$$QR = \frac{f(x+h) - f(x-h)}{2h}$$

The "two sided" version of the derivative is:

Gradient at P =
$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

If $y = \sin x$ then $y' = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x-h)}{2h}$
This is much easier for students to follow than the traditional method.

$$= \lim_{h \to 0} \frac{2\cos(x) \sin(h)}{2h}$$

$$= \cos x \times \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \cos x \times \frac{1}{h} \text{ if } x \text{ is in radians!}$$
(Or $= \cos x \times 0.01745$ if x is in degrees!) see below...

Consider : $L = lim \underline{si}$	n (h)
$h \rightarrow 0$	h
USING DEGREES :	7
Let $h = 0.0001$ degrees	
$L \approx \underline{\sin(0.0001^{\circ})}$	
0.0001	
= 0.017453292	
So, if $y = sin (x degrees)$	
$\frac{dy}{dx} = \cos(x) \times \frac{0.01745}{0.01745}$	-

Similarly for the derivative of $y = \cos x$

Gradient at P =
$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

If y = cos x then y' = $\lim_{h \to 0} \frac{cos(x+h) - cos(x-h)}{2h}$
This is much easier for students to follow than the traditional method.

$$\begin{bmatrix} = \lim_{h \to 0} \frac{cos x \cos h - sin x \sin h - cos x \cos h - sin x \sin h}{2h} \\ = \lim_{h \to 0} \frac{-2sin(x) sin(h)}{2k} \\ = -sin x \times \lim_{h \to 0} \frac{sin(h)}{h} \end{bmatrix}$$

 $= -\sin x \times 1$ if x is in radians!

This is a VERY good reason for using RADIANS when differentiating <u>Trigonometric functions</u>. In fact, I think it is the only place that radians need to be used.