RECTANGULAR and POLAR FORM of Complex Numbers.

1. imag

$z=1+i \quad$ and

$z=\sqrt{ } 2 \operatorname{cis}\left(45^{0}\right)$

The above are two ways to write the same complex number.
If we examine $z=\sqrt{ } 2 \boldsymbol{c i s}\left(45^{\circ}\right)$ we get $z=\sqrt{ } 2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$

$$
\begin{aligned}
& =\sqrt{ } 2\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
& =1+i
\end{aligned}
$$

Clearly the two forms of z are equal.
2. Generally, consider the complex number represented by \mathbf{P} below:
imag

The complex number represented by the point P on this Argand diagram can be written as:
$z=x+i y \quad$ but using basic trigonometry: $\quad x=r \cos \theta$ and $y=r \sin \theta$
so simply substituting we get $z=\boldsymbol{x}+\boldsymbol{i y}$ $=r \cos \theta+i r \sin \theta$
$=r(\cos \theta+i \sin \theta)$
Which we write in the short form $z=r \operatorname{cis}(\theta)$
IMPORTANT POINT: \boldsymbol{r} is the LENGTH of OP so it is ALWAYS POSITIVE.

3

Here $z=3+0 i$ in rectangular form.
The length of $z=3$
also called the modulus of z or $|z|$
The angle z makes with the positive real axis is 0^{0}
also called arg(z)
So in polar form $z=3 \operatorname{cis}\left(0^{0}\right)$

Here $z=0+3 i$ in rectangular form. The length of z or $|z|=3$ (not $3 i$)

The angle z makes with the positive real axis is $\arg (z)=90^{0}$

So in polar form $z=3$ cis $\left(90^{\circ}\right)$

Here $z=-3+0 i$ in rectangular form.
The length of z or $|z|=4 \quad$ (not -4)
The angle z makes with the positive real axis is $\arg (z)=180^{0}$

So in polar form $z=4$ cis $\left(180^{\circ}\right)$

Here $z=0-2 i$ in rectangular form.
The length of z or $|z|=2$ (not $-2 i$)
The angle z makes with the positive real axis is $\arg (z)=270^{\circ}$ or -90°

So in polar form $z=2$ cis $\left(270^{\circ}\right)$

$$
\text { or } z=2 \operatorname{cis}\left(-90^{\circ}\right)
$$

7

Here $z=4+3 i$ in rectangular form.
The length of z or $|z|=\sqrt{ }\left(4^{2}+3^{2}\right)=5$ by Pythagoras' theorem.

The angle z makes with the positive real axis is $\tan ^{-1}(3 / 4) \approx 36.9^{0}$
so $\arg (z) \approx 36.9^{0}$
So in polar form $z=5$ cis (36.9 ${ }^{\circ}$)

Here $z=-3+3 i$ in rectangular form.
The length of z or $|z|=\sqrt{ }\left(3^{2}+3^{2}\right)=\sqrt{ } 18$ by Pythagoras' theorem.

The angle z makes with the positive real axis is $\arg (z)=180-45=135^{\circ}$

So in polar form $z=\sqrt{ } 18$ cis $\left(135^{\circ}\right)$

Here $z=-4-4 i$ in rectangular form.
The length of z or $|z|=\sqrt{ }\left(4^{2}+4^{2}\right)=\sqrt{ } 32$
The angle z makes with the positive real axis is $\arg (z)=225^{\circ}$ or -135°

So in polar form $z=\sqrt{ } 32$ cis $\left(225^{\circ}\right)$

$$
\text { or } z=\sqrt{ } 32 \operatorname{cis}\left(-135^{0}\right)
$$

Here $z=2-2 i$ in rectangular form.
The length of z or $|z|=\sqrt{ } 8$
The angle z makes with the positive real axis is $\arg (z)=315^{0}$ or -45^{0}

So in polar form $z=\sqrt{ } 8$ cis $\left(315^{\circ}\right)$

$$
\text { or } z=\sqrt{ } 8 \operatorname{cis}\left(-45^{\circ}\right)
$$

Here $z=-5+3 i$ in rectangular form. The length of z or $|z|=\sqrt{ }(25+9)$ $=\sqrt{ } 34$
Angle $\alpha=\tan ^{-1}(3 / 5) \approx 31^{0}$
So θ, the angle z makes with the positive real axis is $\arg (z)=180-31=149^{\circ}$

So in polar form $z=\sqrt{ } 34$ cis $\left(149^{\circ}\right)$

Here $z=-5-2 i$ in rectangular form.
The length of z or $|z|=\sqrt{ }(25+4)=\sqrt{ } 29$
Angle $\alpha=\tan ^{-1}(2 / 5) \approx 21.8^{0}$
So θ, the angle z makes with the positive real axis is $\arg (z)=180+201.8=201.8^{0}$

So in polar form $z=\sqrt{ } 29$ cis $\left(201.8^{0}\right)$

Here $z=1-3 i$ in rectangular form.
The length of z or $|z|=\sqrt{ }(9+1)=\sqrt{ } 10$
Angle $\alpha=\tan ^{-1}(3 / 1) \approx 71.6^{0}$
So θ, the angle \boldsymbol{z} makes with the positive real axis is $\arg (z)=360-71.6=288.4^{0}$

So in polar form $z=\sqrt{ } 10$ cis (288.4 ${ }^{\circ}$)

SPECIAL CASES.

Look out for the "special triangles"

Here $z=-1+i \sqrt{ } 3$
in rectangular form.
The length of z or $|z|$
$=\sqrt{ }(3+1)=\sqrt{ } 4=2$
α is clearly 60^{0} (see special triangle)
or $\tan ^{-1}(\sqrt{ } 3)=60^{0}$
So $\theta=180-60=120^{\circ}$
So in polar form $z=2$ cis 120°

Here $z=\sqrt{ } 3+i$ in rectangular form.
The length of z or $|z|$
$=\sqrt{ }(3+1)=\sqrt{ } 4=2$
θ is clearly 30° (see special triangle)

So in polar form $z=2 \operatorname{cis} 30^{0}$

SPECIAL NOTE:

If we use a constant real number \boldsymbol{p}, such as $\boldsymbol{z}=\boldsymbol{p}+\boldsymbol{0 i}$ obviously \boldsymbol{p} could be a positive number or a negative number.

This means that we cannot write z in its polar form unless we know whether \boldsymbol{p} is positive or negative.

If p is a positive real number then \boldsymbol{z} looks like this:
and $\arg (z)$ would be 0^{0}
so $z=p \operatorname{cis}\left(0^{0}\right)$

But if p is a negative real number then z looks like this:
and $\boldsymbol{\operatorname { a r g }}(\boldsymbol{z})$ would be 0^{0}
so $z=p \operatorname{cis}\left(180^{\circ}\right) \quad$ not $-p \operatorname{cis}\left(180^{\circ}\right)$

However, if we say \boldsymbol{p} is any real number (positive or negative) then obviously we could say that even powers such as \boldsymbol{p}^{2} or \boldsymbol{p}^{4} or \boldsymbol{p}^{6} etc would be POSITIVE and any odd powers such as \boldsymbol{p}^{1} or \boldsymbol{p}^{3} or \boldsymbol{p}^{5} etc would be NEGATIVE.

Therefore if we want to express $\boldsymbol{z}=\boldsymbol{p}^{2}+\boldsymbol{0} \boldsymbol{i}$ in polar form we can be confident that
$\arg (z)$ would be 0^{0}
so $z=p^{2} \operatorname{cis}\left(0^{0}\right)$

And if we want to express $\boldsymbol{z}=-\boldsymbol{p}^{2}+\boldsymbol{0 i}$ in polar form we can be confident that and $\arg (z)$ would be 180°
so $z=p^{2} \operatorname{cis}\left(180^{\circ}\right)$ obviously not $-p^{2} \operatorname{cis}\left(180^{\circ}\right)$

In the following examples we will assume that the variable p is a POSITIVE REAL NUMBER.

FURTHER SPECIAL CASES:

1. Suppose $z=\boldsymbol{p}+\boldsymbol{0 i}$

Clearly $|z|=p$ and $\arg (z)=0^{0}$

$$
\text { so } z=p \operatorname{cis}\left(0^{0}\right)
$$

2. Suppose $z=0+\boldsymbol{p} \boldsymbol{i}$

Clearly $|\boldsymbol{z}|=\boldsymbol{p} \quad$ (NOT pi) and $\arg (z)=90^{\circ}$

$$
\text { so } z=p \operatorname{cis}\left(90^{\circ}\right)
$$

3. Suppose $z=-\boldsymbol{p}+\boldsymbol{0} \boldsymbol{i}$

$$
\text { Clearly }|z|=\text { length }=p \quad(\text { NOT }-p)
$$

and $\arg (z)=180^{\circ}$

$$
\text { so } z=p \operatorname{cis}\left(180^{\circ}\right)
$$

4. Suppose $z=\boldsymbol{0}-\boldsymbol{p i}$

Clearly $|z|=$ length $=\boldsymbol{p}\left(\right.$ NOT $^{\prime}$-pi $)$
and $\arg (z)=270^{\circ}$ or $\mathbf{- 9 0} 0^{\circ}$
so $z=p \operatorname{cis}\left(270^{\circ}\right)$

5. Suppose $z=\boldsymbol{p}+\boldsymbol{p} \boldsymbol{i}$

Clearly $|z|=\sqrt{ }\left(p^{2}+p^{2}\right)=\sqrt{ } 2 p^{2}=p \sqrt{ } 2$ and $\arg (z)=45$

$$
\text { so } z=p \sqrt{ } 2 \operatorname{cis}\left(45^{0}\right)
$$

6. Suppose $z=-p+p i$

Clearly $|z|=\sqrt{ }\left(p^{2}+p^{2}\right)=\sqrt{ } 2 p^{2}=p \sqrt{ } 2$ and $\arg (z)=135^{\circ}$

$$
\operatorname{so} z=p \sqrt{ } 2 \operatorname{cis}\left(135^{0}\right)
$$

7. Suppose $z=\boldsymbol{p}-\boldsymbol{p i}$

Clearly $|z|=\sqrt{ }\left(p^{2}+p^{2}\right)=\sqrt{ } 2 p^{2}=p \sqrt{ } 2$ and $\arg (z)=225^{\circ}$

$$
\text { so } z=p \sqrt{ } 2 \operatorname{cis}\left(225^{0}\right)
$$

8*. Suppose $z=\boldsymbol{p}+(\boldsymbol{p} \sqrt{ } 3) \boldsymbol{i}$

$$
\begin{aligned}
\text { Clearly }|z|=r & =\sqrt{ }\left(p^{2}+3 p^{2}\right) \\
& =\sqrt{ } 4 p^{2} \\
& =2 p
\end{aligned}
$$

and $\arg (z)=\tan ^{-1}\left(\frac{p \sqrt{ } 3}{p}\right)=60^{\circ}$
so $z=2 p \operatorname{cis}\left(60^{0}\right)$

This triangle should be recognised as one of our special triangles.

Always look out for the "special triangles"

