DE MOIVRE'S DISCOVERY.

Considering operations with complex numbers in the Cartesian (Rectangular) form: eg let $u=2+3 i$ and $v=1+i$
then the operations $u+v$ and $u-v$ are very straightforward.
ie $u+v=3+4 i$ and $u-v=1+2 i$
but the operations $u \times v$ and $u \div v$ are disappointingly quite awkward.
ie $u v=(2+3 i)(1+i)=2+2 i+3 i+3 i^{2}=-1+5 i$
and $\frac{u}{v}=\frac{(2+3 i)}{(1+i)}=\frac{(2+3 i) \times\left(\frac{1-i)}{(1+i)}=\frac{5}{(1-i)}+\frac{i}{2}, ~\right.}{2}$
De Moivre decided to try multiplying and dividing in the POLAR FORM and discovered something amazingly neat!

Let $u=1 \operatorname{cis}(A)$ and $v=1 \operatorname{cis}(B)$

The PRODUCT $u \times v$

$=(\cos A+i \sin A) \times(\cos B+i \sin B)$
$=\cos A \cos B+i(\sin A \cos B+\cos A \sin B)+i^{2}(\sin A \sin B)$
$=\cos A \cos B-\sin A \sin B+i(\sin A \cos B+\cos A \sin B)$
$=\quad \cos (A+B) \quad+i \sin (A+B)$
This means that $\operatorname{cis}\left(30^{\circ}\right) \times \operatorname{cis}\left(45^{0}\right)=\operatorname{cis}(30+45)=\operatorname{cis}\left(75^{\circ}\right)$
Or cis $(\pi / 6) \times \operatorname{cis}(\pi / 4)=\operatorname{cis}(\pi / 6+\pi / 4)=\operatorname{cis}(7 \pi / 12)$

The QUOTIENT $\frac{\boldsymbol{u}}{\boldsymbol{v}}$

$=\frac{(\cos A+i \sin A)}{(\cos B+i \sin B)}=\frac{(\cos A+i \sin A)}{(\cos B+i \sin B)} \times \frac{(\cos B-i \sin B)}{(\cos B-i \sin B)}$

$$
\begin{aligned}
& =\frac{\cos A \cos B+\sin A \sin B+i(\sin A \cos B-\cos A \sin B)}{\cos ^{2} B+\sin ^{2} B} \\
& =\cos (A-B)+\boldsymbol{i} \sin (A-B)
\end{aligned}
$$

This means that $\frac{c i s\left(45^{0}\right)}{c i s\left(30^{\circ}\right)}=\operatorname{cis}(45-30)=\operatorname{cis}\left(15^{\circ}\right)$

$$
\text { or } \frac{\operatorname{cis}(\pi / 4)}{\operatorname{cis}(\pi / 6)}=\operatorname{cis}(\pi / 4-\pi / 6)=\operatorname{cis}(\pi / 12)
$$

Imagine how elated De Moivre would have felt discovering this!!!
(However, addition and subtraction are much easier in rectangular form!)

Obviously if $u=8 \operatorname{cis}\left(70^{\circ}\right)$ and $v=2 \operatorname{cis}\left(30^{\circ}\right)$
then $u v=8 \times 2 \times \operatorname{cis}(70) \times \operatorname{cis}(30)$

$$
=16 \operatorname{cis}\left(100^{\circ}\right)
$$

and $\frac{u}{v}=\frac{8 \operatorname{cis}(70)}{2 \operatorname{cis}(30)}=4 \operatorname{cis}\left(40^{\circ}\right)$

De Moivre went on to consider POWERS of complex numbers.

$$
\text { If } u=3 \operatorname{cis}\left(20^{0}\right)
$$

$$
\text { then } u^{2}=3^{2} \operatorname{cis}(20) \times \operatorname{cis}(20)
$$

$$
\begin{aligned}
& =9 \operatorname{cis}(2 \times 20) \\
& =9 \operatorname{cis}\left(40^{\circ}\right)
\end{aligned}
$$

So obviously $u^{3}=3^{3} \operatorname{cis}(20) \times \operatorname{cis}(20) \times \operatorname{cis}(20)$

$$
\begin{aligned}
& =27 \operatorname{cis}(3 \times 20) \\
& =27 \operatorname{cis}\left(60^{\circ}\right)
\end{aligned}
$$

Similarly $u^{4}=3^{4} c i s(4 \times 20)$

$$
=81 \operatorname{cis}\left(80^{\circ}\right)
$$

De Moivre generalised this and called it his own THEOREM.

De Moirvre's Theorem

If $z=r \operatorname{cis}(\theta)$ then $z^{n}=r^{n} \operatorname{cis}(n \theta)$
Special Application. Find $(1+i)^{10}$
NOTE $:(1+i)=\sqrt{2} \operatorname{cis}\left(45^{0}\right)=2^{1 / 2} \operatorname{cis} 45$
So $(1+i)^{10}=\left(2^{1 / 2}\right)^{10}$ cis (10×45)

$$
\begin{aligned}
& =2^{5} \operatorname{cis}\left(450^{0}\right) \\
& =32 \operatorname{cis}\left(90^{0}\right) \\
& =32(\cos 90+i \sin 90) \\
& =32(0+1 i) \\
& =32 i
\end{aligned}
$$

It is MOST useful to be familiar with the SPECIAL TRIANGLES! eg Find $(\sqrt{3}-i)^{6}$

$$
\begin{aligned}
& =2^{6} \operatorname{cis}(6 \times 330) \text { or } 2^{2} \operatorname{cis}(6 \times-30) \\
& =64 \operatorname{cis}(1980) \text { or } 64 \operatorname{cis}(-180) \\
& =64(\cos -180+\operatorname{isin}-180) \\
& =64(-1+0 i) \\
& =-64
\end{aligned}
$$

