SOLVING COMPLEX NUMBER EQUATIONS OF THE FORM $z^n = a + ib$ Students need to realise that the <u>equation</u> ax + b = 4x + 6 can be "solved" in the usual way and get x = 6 - bbut the *identity* ax + b = 4x + 6 just implies a = 4 and b = 6. Similarly if a + bi = 5 + 2i then a = 5 and b = 2. In particular, if $r(\cos \theta + i \sin \theta) = 4(\cos 3\theta^0 + i \sin 3\theta^0)$ then r = 4, $\theta = 3\theta^0$. A basic trigonometric idea is that the directions θ , θ + 360⁰, θ + 720⁰, are all the same. In particular, $sin(\theta) = sin(\theta + 360^{\circ}) = sin(\theta + 720^{\circ})$ etc or in general $sin(\theta) = sin(\theta + 360n)$ is any number of 360's can be added. In all cases we put $z = r \operatorname{cis}(\theta)$ and use De Moivre's Theorem. *NOTE:* 8 = 8 + 0i1. Solve $z^3 = 8$ So $(r cis(\theta))^3 = 8 cis (0 + 360n)$ So in polar form r = 8 and $\theta = 0$ $r^3 \operatorname{cis}(3\theta) = 8 \operatorname{cis}(360n)$ $8 + 0i = 8 \operatorname{cis}(0)$ but in this case we need 8 + 0i = 8 cis(0 + 360n)so $r^3 = 8$ and $3\theta = 360n$ producing r = 2 and $\theta = 120n = 0^{0}, 120^{0}, 240^{0}$ (we only need 3 angles because $z^3 = 8$ only has 3 solutions) imag $z_1 = 2 cis(0)$ sols at 120° $z_2 = 2 cis(120^0)$ real $z_3 = 2 cis(240^0)$ Sometimes we may be required to express answers in a + bi form.

$$z_{1} = 2 \operatorname{cis}(0) = 2(\cos 0 + i \sin 0) = 2 + 0i$$

$$z_{2} = 2 \operatorname{cis}(120^{0}) = 2\cos(120) + i2\sin(120) = -1 + i\sqrt{3}$$

$$z_{3} = 2 \operatorname{cis}(240^{0}) = 2\cos(240) + i2\sin(240) = -1 - i\sqrt{3}$$

2. **Solve** $z^4 = -81$

Students MUST grasp the idea that the modulus is always POSITIVE.It is just a LENGTH.NOTE : $-81 + 0i = +81 \operatorname{cis} (180^{\circ})$

Notice that solutions are at <u>90^o to each other</u> but are <u>not complex conjugates</u>. Solutions are only complex conjugates when all numbers in the equation are real numbers. In this case $z^4 = i$ which contains a non real number.

4. Solve $z^6 = 64 \operatorname{cis} \left(\frac{2\pi}{3}\right)$ or $z = 64 \operatorname{cis} (120^{\circ})$

This equation has 6 solutions so we need 6 angles.

5. Solve the equation $z^3 - 64i = 0$ where z is a complex number $r \operatorname{cis}(\theta)$

Leave your solutions in the polar form.

(We change the equation to the form: $z^3 = 64i$) Let $z = r \operatorname{cis} \theta$ $z^3 = r^3 \operatorname{cis} 3\theta = 64 \operatorname{cis} (90 + 360n)$ r = 4 $3\theta = 90 + 360n$ $\theta = 30 + 120n$ $z_1 = 4 \operatorname{cis} 30^0$ $z_2 = 4 \operatorname{cis} 150^0$

 $z_3 = 4 \operatorname{cis} 270^{\circ} \operatorname{or} 4 \operatorname{cis} (-90^{\circ})$

7. Solve the equation : $z^2 = 3 - 4i$ imag Note: 3 - 4i = 5cis(-53.1)Let $z = rcis\theta$

$$r^{2} cis \ 2\theta = 5 \ cis(-53.1 + 360n)$$

$$r = \sqrt{5} \qquad 2\theta = -53.1 + 360n \qquad \theta = -26.6 \ or \ -26.6 + 180$$

$$\theta = -26.6 \ or \ 153.4$$

Solutions are :

$$z_1 = \sqrt{5cis(-26.6^{\circ})}$$

 $z_2 = \sqrt{5cis(153.4^{\circ})}$