SOLVING COMPLEX NUMBER EQUATIONS OF THE FORM $z^{n}=a+i b$ Students need to realise that the equation $a x+b=4 x+6$ can be "solved" in the usual way and get $\boldsymbol{x}=\frac{\boldsymbol{\sigma}-\boldsymbol{b}}{\boldsymbol{a}-\boldsymbol{4}}$
but the identity $a x+b=4 x+6$ just implies $a=4$ and $b=6$.
Similarly if $a+b i=5+2 i$ then $a=5$ and $b=2$.
In particular, if $r(\cos \theta+i \sin \theta)=4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ then $r=4, \theta=30^{\circ}$.
A basic trigonometric idea is that the directions $\theta, \theta+360^{\circ}, \theta+720^{\circ}, \ldots \ldots$. are all the same.

In particular, $\sin (\theta)=\sin \left(\theta+360^{\circ}\right)=\sin \left(\theta+720^{\circ}\right)$ etc or in general $\underline{\sin }(\boldsymbol{\theta})=\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta}+\mathbf{3 6 0 n})$ ie any number of 360 's can be added.

In all cases we put $z=r \operatorname{cis}(\theta)$ and use De Moivre's Theorem.

1. Solve $z^{3}=8$

So $\quad(r \operatorname{cis}(\theta))^{3}=8 \operatorname{cis}(0+360 n)$

$$
r^{3} \operatorname{cis}(3 \theta)=8 \operatorname{cis}(360 n)
$$

so $r^{3}=8 \quad$ and $\quad 3 \theta=360 n$

producing $r=2$ and $\boldsymbol{\theta}=120 n=\mathbf{0}^{\mathbf{0}}, 12 \mathbf{0}^{\circ}, 240^{\circ}$
(we only need 3 angles because $z^{3}=8$ only has 3 solutions)
$z_{1}=2 \operatorname{cis}(0)$
$z_{2}=2 \operatorname{cis}\left(120^{\circ}\right)$
$z_{3}=2 \operatorname{cis}\left(240^{\circ}\right)$

Sometimes we may be required to express answers in $\mathrm{a}+\mathrm{bi}$ form.
$\mathrm{Z}_{1}=2 \operatorname{cis}(0)=2(\cos 0+i \sin 0)=2+0 i$
$\mathrm{Z}_{2}=2 \operatorname{cis}\left(120^{\circ}\right)=2 \cos (120)+\mathrm{i} 2 \sin (120)=-1+\mathrm{i} \sqrt{ } 3$
$\mathrm{Z}_{3}=2 \operatorname{cis}\left(240^{\circ}\right)=2 \cos (240)+\mathrm{i} 2 \sin (240)=-1-\mathrm{i} \sqrt{ } 3$
2. Solve $z^{4}=-81$

Students MUST grasp the idea that the modulus is always POSITIVE. It is just a LENGTH.

$$
\begin{gathered}
z^{4}=+81 \operatorname{cis}(180+360 n) \\
r^{4} \operatorname{cis}(4 \theta)=81 \operatorname{cis}(180+360 n) \\
r^{4}=81 \quad \text { and } \quad 4 \theta=180+360 n
\end{gathered}
$$

so $r=3($ NEVER $\pm 3) \quad$ and $\theta=45+90 n=45,135,225,315$
(we now need 4 angles because $z^{4}=-81$ has 4 solutions)
$z_{1}=3 \operatorname{cis}(45)$
$z_{2}=3 \operatorname{cis}\left(135^{0}\right)$
$z_{3}=3 \operatorname{cis}\left(225^{\circ}\right)$
$z_{4}=3 \operatorname{cis}\left(315^{\circ}\right)$

3. Solve $z^{4}=\boldsymbol{i}$
r^{4} cis $4 \theta=1$ cis $(90+360 n)$
$r=1 \quad 4 \theta=90+360 n$
$\theta=22.5+90 n$

$z_{l}=$ cis 22.5
$z_{2}=$ cis 112.5
$z_{3}=$ cis 202.5
$z_{4}=\operatorname{cis} 292.5$

Notice that solutions are at 90° to each other but are not complex conjugates.
Solutions are only complex conjugates when all numbers in the equation are real numbers. In this case $z^{4}=\boldsymbol{i}$ which contains a non real number.
4. Solve $z^{6}=64$ cis $\left(\frac{2 \pi}{3}\right)$ or $z=64$ cis $\left(120^{\circ}\right)$

This equation has 6 solutions so we need 6 angles.
r^{6} cis $6 \theta=64$ cis $(120+360 n)$
$r=2 \quad 6 \theta=120+360 n$

$$
\theta=20+60 n
$$

$z_{1}=2 \operatorname{cis} 20^{\circ}$
$z_{2}=2 \operatorname{cis} 80^{\circ}$
$z_{3}=2 \operatorname{cis} 140^{\circ}$
$z_{4}=2 \operatorname{cis} 200^{\circ}$
$z_{5}=2 \operatorname{cis} 260^{\circ}$
$z_{1}=2 \operatorname{cis} 320^{\circ}$

5. Solve the equation $z^{3}-64 i=0 \quad$ where z is a complex number $r \operatorname{cis}(\theta)$ Leave your solutions in the polar form.
(We change the equation to the form: $z^{3}=64 i$)
Let $z=r \operatorname{cis} \theta$

$$
z^{3}=r^{3} \operatorname{cis} 3 \theta=64 \text { cis }(90+360 n)
$$

$$
r=4 \quad 3 \theta=90+360 n
$$

$$
\theta=30+120 n
$$

$z_{1}=4 \operatorname{cis} 30^{\circ}$
$z_{2}=4 \operatorname{cis} 150^{0}$
$z_{3}=4 \operatorname{cis} 270^{\circ}$ or $4 \operatorname{cis}\left(-90^{\circ}\right)$

6. Solve $z^{3}=\sqrt{ } 3-\boldsymbol{i}$ and write your answers in the form $\boldsymbol{r} \boldsymbol{c i s} \boldsymbol{\theta}$ A good understanding of the "special triangles" is important in cases like this!

Let $z=r \operatorname{cis} \theta$

$$
z^{3}=r^{3} \operatorname{cis} 3 \theta=2 \operatorname{cis}\left(330^{0}+360 n\right)
$$

$$
r^{3}=3 \quad 3 \theta=330^{0}+360 n
$$

$$
r=3^{1 / 3} \quad \theta=110^{\circ}+120 n=110^{\circ}, 230^{\circ}, 350^{\circ}
$$

$z_{1}=2^{1 / 3}$ cis 110^{0}
$z_{2}=2^{1 / 3}$ cis 230^{0} or $2^{1 / 3} \operatorname{cis}\left(-130^{\circ}\right)$
$z_{3}=2^{1 / 3}$ cis 350^{0} or $2^{1 / 3}$ cis $\left(-10^{0}\right)$

7. Solve the equation : $z^{2}=3-4 i$ Note: $3-4 i=5 \operatorname{cis}(-53.1)$

Let $z=r c i s \theta$

$$
\begin{aligned}
& r^{2} \operatorname{cis} 2 \theta=5 \operatorname{cis}(-53.1+360 n) \\
& r=\sqrt{ } 5 \quad 2 \theta=-53.1+360 n \quad \theta=-26.6 \text { or }-26.6+180 \\
& \\
& \\
& \theta=-26.6 \text { or } 153.4
\end{aligned}
$$

Solutions are :

$z_{1}=\sqrt{ } 5 c i s\left(-26.6^{0}\right)$
$z_{2}=\sqrt{ } 5 \operatorname{cis}\left(153.4^{0}\right)$

