TRICKY POINTS DEALING WITH SURDS.

Many students perpetually make the mistake of writing things like:

$$
\sqrt{\left(x^{2}+y^{2}\right)}=x+y
$$

They simply need to be shown what we can and cannot do by considering problems which can be worked out two ways so that we can verify certain procedures.

Consider $\sqrt{16+9}$
If we do the brackets first, we get $\sqrt{ } \mathbf{2 5}$ which of course equals 5
Then we TEST whether we can do the following:

$$
\begin{aligned}
\sqrt{16+9} & =\sqrt{ }(16)+\sqrt{ }(9) \\
& =4+3 \\
& =7
\end{aligned}
$$

So it appears that $\sqrt{ }(\boldsymbol{a}+\boldsymbol{b}) \neq \sqrt{ } \boldsymbol{a}+\sqrt{ } \boldsymbol{b}$

It still "looks" very tempting to put: $\sqrt{\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right)}=\boldsymbol{x}+\boldsymbol{y}$ but the only way the answer can be $\boldsymbol{x}+\boldsymbol{y}$ is as follows!

$$
\sqrt{\left(x^{2}+2 x y+y^{2}\right)}=\sqrt{(x+y)^{2}}=x+y
$$

Students should satisfy themselves about what we can or cannot do with other numerical cases by checking both ways as follows:

$$
\sqrt{100-64}=\sqrt{ }(\mathbf{3 6})=\mathbf{6} \text { which is correct }!
$$

but $\sqrt{100-64}=\sqrt{ }(\mathbf{1 0 0})-\sqrt{ }(\mathbf{3 6})=\mathbf{1 0}-\mathbf{6}=\mathbf{4}$ which is clearly wrong!

Have you ever seen this point addressed in any text?

DOES $\sqrt{a \times b}$ always equal $\sqrt{a} \times \sqrt{b}$?

This is all about the ORDER in which the calculations are done.
$\sqrt{a \times b}$ means multiply \boldsymbol{a} and \boldsymbol{b} THEN find the square root. $\sqrt{a} \times \sqrt{b}$ means find each square root THEN multiply them.

Sometimes they are not equal!

These examples will show when.
Consider $\sqrt{4} \times \sqrt{9}=2 \times 3=6$
and $\sqrt{(4 \times 9)}=\sqrt{36}=6$
So when both numbers are positive $\sqrt{\boldsymbol{a} \times \boldsymbol{b}}=\sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

Now consider $\sqrt{4} \times \sqrt{(-9)}=2 \times 3 i=6 i$
and

$$
\sqrt{4} \times(-9)=\sqrt{-36}=6 i
$$

So when one number is positive and the other is negative $\sqrt{\boldsymbol{a} \times \boldsymbol{b}}=\sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

Now consider $\sqrt{(-4)} \times \sqrt{(-9)}=2 i \times 3 i=-6$
BUT

$$
\sqrt{(-4) \times(-9)}=\sqrt{36}=+6
$$

So when both numbers are negative $\sqrt{\boldsymbol{a} \times \boldsymbol{b}} \neq \sqrt{\boldsymbol{a}} \times \sqrt{\boldsymbol{b}}$

This is the source of many false proofs for example:

$$
1=\sqrt{+1}=\sqrt{(-1) \times(-1)}=\sqrt{(-1)} \times \sqrt{(-1)}=i \times i=-1
$$

This seems to prove $1=\mathbf{- 1}$ but the false step is in RED type!

We should also consider if $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{\frac{a}{b}}$ means "find \boldsymbol{a} divided by \boldsymbol{b} first then find the square root"
while $\frac{\sqrt{a}}{\sqrt{b}}$ means "find the square roots of \boldsymbol{a} and \boldsymbol{b} first then divide them".

Example 1.

$\sqrt{\frac{64}{16}}=\sqrt{4}=2$	$\frac{\sqrt{64}}{\sqrt{16}}=\frac{8}{4}=2$
	So $\sqrt{\frac{64}{16}}=\frac{\sqrt{64}}{\sqrt{16}}$

Example 2.

$$
\frac{\sqrt{\frac{-64}{16}}=\sqrt{-4}=2 i}{\text { So } \sqrt{\frac{-64}{16}}=\frac{\sqrt{-64}}{\sqrt{16}}}=\frac{8 i}{4}=2 i
$$

Example 3.

$\frac{64}{-16}$$=\sqrt{-4}=2 i \quad \frac{\sqrt{64}}{\sqrt{-16}}=\frac{8}{4 i}=\frac{8}{4 i} \times \frac{i}{i}=-2 i$
So $\sqrt{\frac{64}{-16}} \neq \frac{\sqrt{64}}{\sqrt{-16}}$

Example 4.

$\sqrt{\frac{-64}{-16}}=\sqrt{4}=2$
So $\sqrt{\frac{-64}{-16}}=\frac{\sqrt{-64}}{\sqrt{-16}}$
$\sqrt{-16}$

