DEALING WITH SURDS.

Dealing with surds is NOT a matter of using "rules" but of using "logic".

1. Consider: $\sqrt{ } 9 \times \sqrt{ } 9$

Obviously this is 3×3

$$
=9
$$

But notice that we can do this in a
different order: $\quad \sqrt{ } 9 \times \sqrt{ } 9$

$$
\begin{aligned}
& =\sqrt{ }(9 \times 9) \\
& =\sqrt{ }(81) \\
& =9 \text { as above }!
\end{aligned}
$$

2. This means that we can write:

$$
\sqrt{ } 3 \times \sqrt{ } 5=\sqrt{ }(3 \times 5)=\sqrt{ } 15
$$

Or in general : $\sqrt{ } \boldsymbol{a} \times \sqrt{ } \boldsymbol{b}=\sqrt{ }(\boldsymbol{a b})$
3. BUT consider $\sqrt{ }(9+16)$

$$
\begin{aligned}
& =\sqrt{ }(25) \\
& =5
\end{aligned}
$$

But if we try it in a different order

like before it is not correct:

Consider $\sqrt{(9+16)}$

$$
\begin{aligned}
& =\sqrt{ }(9)+\sqrt{ }(16) \\
& =3+4 \\
& =7
\end{aligned}
$$

because we know the real answer is 5 .
4. This means that $\sqrt{ }(\boldsymbol{a}+\boldsymbol{b}) \neq \sqrt{ } \boldsymbol{a}+\sqrt{ } \boldsymbol{b}$

So even though it looks tempting to do the following:
$\sqrt{ }\left(x^{2}+16\right)=x+4$ we cannot do it!
But notice that $\sqrt{ }\left(x^{2}+8 x+16\right)$

$$
\begin{aligned}
& =\sqrt{ }(x+4)^{2} \\
& =x+4
\end{aligned}
$$

5. Consider $\sqrt{ }\left(6^{2}+8^{2}\right)$

It does look very tempting to put:

$$
\sqrt{ }\left(6^{2}+8^{2}\right)=6+8=14 \text { but we can }
$$

see that the correct answer is:

$$
\begin{aligned}
\sqrt{ }\left(6^{2}+8^{2}\right) & =\sqrt{ }(36+64) \\
& =\sqrt{ } 100 \\
& =10
\end{aligned}
$$

6. Clearly we can deal with fractions as
follows: $\sqrt{\frac{16}{25}}=\frac{\sqrt{16}}{\sqrt{25}}=\frac{4}{5}$
so that $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
7. Some surds may be simplified as follows as long as a factor is a perfect square: $\sqrt{48}=\sqrt{16 \times 3}$

$$
\begin{aligned}
& =\sqrt{16} \times \sqrt{3} \\
& =\quad 4 \times \sqrt{3}
\end{aligned}
$$

8. It is not possible to add $\sqrt{ } 20+\sqrt{ } 30$ but $\sqrt{ } 50+\sqrt{72}$ can be simplified:

$$
\begin{aligned}
& =\sqrt{ }(25 \times 2)+\sqrt{ }(36 \times 2) \\
& =5 \sqrt{ } 2+6 \sqrt{ } 2 \\
& =11 \sqrt{ } 2
\end{aligned}
$$

9. Similarly $\quad \sqrt{63}+\sqrt{28}$

$$
\begin{aligned}
& =\sqrt{9 \times 7}+\sqrt{4 \times 7} \\
& =3 \sqrt{7}+2 \sqrt{7} \\
& =5 \sqrt{7}
\end{aligned}
$$

10. Surds are easier to deal with if they have rational denominators.
The two types are:
(a) $\frac{3}{\sqrt{5}}=\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{5}$
(b) $\frac{5+\sqrt{2}}{4-\sqrt{2}}=\frac{5+\sqrt{2}}{4-\sqrt{2}} \times \frac{4+\sqrt{2}}{4+\sqrt{2}}$

$$
\begin{aligned}
& =\frac{20+4 \sqrt{2}+5 \sqrt{2}+2}{16+4 \sqrt{2}-4 \sqrt{2}-2} \\
& =\frac{22+9 \sqrt{2}}{14} \text { or } \frac{22}{14}+\frac{9 \sqrt{2}}{14}
\end{aligned}
$$

(we usually write irrationals in the form $\boldsymbol{a}+\boldsymbol{b} \sqrt{ } \boldsymbol{c}$ rather than $\frac{a+b \sqrt{c}}{d}$)

