TEACHING INTEGERS.

(After 47 years of teaching MANY different ways to teach **Integers**, I consider the following method is BY FAR the best.)

INTRO: Possible discussion starters:

1. Suppose the temperature is 6^0 C.

If the temp drops $7^{\circ}C$ then we say it is "1^o below zero" or "minus 1^oC" or "-1^oC

2. If you only have \$20 in your account and you write a cheque for \$25 then your account is referred to as "\$5 in the red", meaning you owe the bank \$5 or you have -5 dollars. (*It is better to say "negative 5" rather than "minus 5"*)

OBJECTIVES.

- 1. to know the Integer Number Line.
- 2. to understand > and < signs.
- 3. to understand that ⁺3 means move 3 units to the right and

⁻3 means **move 3 units to the left**.

- 4. to know how to add all combinations of $\pm a + \pm b$ by drawing diagrams and mentally.
- 5. to know how to add all combinations of $\pm a \pm b$ by drawing diagrams and mentally.
- 6. to know how to multiply and divide integers.

TEACHING NOTES.

There are several ways to teach concepts of integers but I strongly recommend the following:

1. A good definition of a < b is that a is on the left of b on a number line.

2. Teach students that ⁺3 means move 3 units to the right

and that **-3 means move 3 units to the left**. <u>-3</u>

3. ⁺3 and ⁻3 are called **OPPOSITES**

 $^{-3}$ is the opposite of $^{+3}$ and $^{+3}$ is the opposite of $^{-3}$

And opposites add to zero ie -3 + 3 = 0

4. Students find it very tedious drawing number lines to show additions so I suggest you give them the sheet of **prepared number lines** to stick in their books, called "ADDING INTEGERS" to teach the idea covering all cases of $\pm a + \pm b$.

ALWAYS START FROM ZERO

On the following number lines, show **HOW** the results can be obtained.

5. SUBTRACTION. We should try to get the idea that ${}^{+}6 - {}^{+}4$ is really the same as ${}^{+}6 + {}^{-}4$ ie <u>subtracting is adding the opposite</u>.

It is quite instructive to think of "+" to mean "followed by" and to think of "-" to mean "followed by the opposite of".

In the same way that ${}^{+}6 + {}^{-}4$ is better thought of as ${}^{+}6$ followed by ${}^{-}4$ we can think of ${}^{+}6 - {}^{+}4$ as ${}^{+}6$ followed by the opposite of ${}^{+}4$

This idea covers the idea of the double negative <u>beautifully</u>:

Eg. $^{+}4 - ^{-}3$ becomes $^{+}4$ "followed by the opposite" of $^{-}3$ which is $^{+}4$ and $^{+}3 = ^{+}7$

Perhaps instead of "*followed by*" you could just use "*and*", and instead of "*followed by the opposite of*" you could just use "*and the opposite of*".

egs

a. ${}^{+}5 - {}^{+}3$ think of: ${}^{+}5$ and opposite of ${}^{+}3 = {}^{+}2$ b. ${}^{+}5 - {}^{+}7$ think of: ${}^{+}5$ and opposite of ${}^{+}7 = {}^{-}2$ c. ${}^{-}2 - {}^{+}3$ think of: ${}^{-}2$ and opposite of ${}^{+}3 = {}^{-}5$ d. ${}^{-}2 - {}^{-}6$ think of: ${}^{-}2$ and opposite of ${}^{-}6 = {}^{+}4$ e. ${}^{-}8 - {}^{-}3$ think of ${}^{-}8$ and opposite of ${}^{-}3 = {}^{-}5$

6. Students will keep trying to <u>MAKE UP THEIR OWN RULES</u> in cases like these.

Their "rules" often do NOT work properly!

Watch out for people who try to use things like:

Positive + *Negative* = *Negative* or something similar !!! Show clearly there is no such rule because:

 $^+6+^-2 = ^+4$ ie Pos + Neg = Pos this time but $^+6+^-10 = ^-4$ ie Pos + Neg = Neg this time.

- 7. However we DO need to make rules for multiplication and division. I like to do it in a **very logical way** as follows:
- (a) ${}^{+}3 \times {}^{+}4$ or just 3×4 MEANS 3 lots of 4 = 4 + 4 + 4 = 12from which we deduce the obvious that POSITIVE × POSITIVE = POSITIVE

also $^{+}4 \times ^{+}3$ or just 4×3 MEANS 4 lots of 3 = 3+3+3+3 = 12

 4×3 and 3×4 mean different things but both come to 12.

(b) Consider $^{+}3 \times ^{-}5$ which means $^{-}5 + ^{-}5 + ^{-}5 = ^{-}15$

from which we deduce the obvious that $POSITIVE \times NEGATIVE = NEGATIVE$

(c) Now consider ${}^{-5} \times {}^{+3}$. We can't think of ${}^{-5}$ lots of ${}^{+3}$ but we can turn it around as in part (a) and call it ${}^{+3} \times {}^{-5} = {}^{-15}$

from which we deduce the obvious that NEGATIVE \times POSITIVE = NEGATIVE

BUT before we continue, it is useful to think of $^{-5} \times ^{+3}$ as : "the opposite "of 5 × $^{+3}$ = "the opposite "of 15 = -15

(d) Lastly, consider -4×-5 Think of "opposite "of 4×-5 = "opposite "of -20= +20

This seems a tricky point but well worth doing.

from which we deduce that NEGATIVE × NEGATIVE = POSITIVE

A real PROOF that $\overline{a} \times \overline{b} = \overline{a.b}$ is really too hard for young students but here it is:

Obviously b + b = 0So a(b + b) = 0Expanding $a \times b + a \times b = 0$ But $a \times b + a \times b = 0$ This shows us that the **opposite** of $a \times b$ is $a \times b$ but we know that the **opposite** of $a \times b$ is $a \times b$ so $a \times b$ must equal $a \times b$ Since we know that $6 \div 2$ is really the multiplication $6 \times \frac{1}{2}$ we can say that the same 4 rules apply to division too.

ie $Pos \div Pos = Pos$ $Pos \div Neg = Neg$ $Neg \div Pos = Neg$ $Neg \div Neg = Pos$ $Neg \div Neg = Pos$ $Neg \div Neg = Pos$

We constantly need to reinforce that they **should NOT apply these rules to <u>addition</u>**.

A common mistake is to shorten the rule to "2 negatives make a positive"! You need to reinforce $-4 \times -5 = +20$ BUT -4 + -5 = -9

8. Substitution problems can be quite instructive in themselves.

Suppose a = 6, b = 2, c = 5Apart from finding the usual, a + b, b + c, a - b, b - c etc. Students should see things like \bar{a} which should be read as "the opposite of" a = 6and \bar{c} which should be read as "the opposite of" c = 5

9. The difference between -4^2 which is ⁻¹⁶ and $(-4)^2$ which is ⁺¹⁶, is very **important** particularly when working out y values such as :

$$y = 6x - x^{2} \text{ when } x = ^{-}4$$
$$= 6 \times ^{-}4 - (^{-}4)^{2}$$
$$= ^{-}24 - (^{+}16)$$
$$= ^{-}40$$

The idea that -4^2 has "implied brackets" is difficult to grasp. ie $-(4^2)$ (NB If students just type -4^2 on a calculator they will get -16)

10. In multiplications, the idea that "*an EVEN number of negatives means the answer is positive and an ODD number of negatives means a negative answer*", takes a while for some students to grasp but it makes a good class discussion time discovering this idea.

ie $-4 \times -3 \times -5 \times 2 \times 1 = -120$ but $-4 \times -3 \times -5 \times 2 \times -1 = +120$

and $(-1)^{25} = -\mathbf{1}$ but $(-1)^{26} = +\mathbf{1}$