TEACHING INTEGERS.

(After 47 years of teaching MANY different ways to teach Integers, I consider the following method is BY FAR the best.)

INTRO: Possible discussion starters:

1. Suppose the temperature is $6^{\circ} \mathrm{C}$.

If the temp drops $7^{0} \mathrm{C}$ then we say it is " 1^{0} below zero" or "minus $1^{0} \mathrm{C}$ " or " $\mathbf{1}^{\mathbf{0}} \mathbf{C}$
2. If you only have $\$ 20$ in your account and you write a cheque for $\$ 25$ then your account is referred to as " $\$ 5$ in the red", meaning you owe the bank $\$ 5$ or you have - $\mathbf{5}$ dollars. (It is better to say "negative 5" rather than "minus 5")

OBJECTIVES.

1. to know the Integer Number Line.
2. to understand > and < signs.
3. to understand that ${ }^{+} 3$ means move 3 units to the right and

$$
\text { - } 3 \text { means move } 3 \text { units to the left. }
$$

4. to know how to add all combinations of ${ }^{ \pm} \mathrm{a}+{ }^{ \pm} \mathrm{b}$ by drawing diagrams and mentally.
5. to know how to add all combinations of ${ }^{ \pm} \mathrm{a}-{ }^{ \pm} \mathrm{b}$ by drawing diagrams and mentally.
6. to know how to multiply and divide integers.

TEACHING NOTES.

There are several ways to teach concepts of integers but I strongly recommend the following:

1. A good definition of $\boldsymbol{a}<\boldsymbol{b}$ is that \boldsymbol{a} is on the left of \boldsymbol{b} on a number line.

2. Teach students that ${ }^{+} \mathbf{3}$ means move $\mathbf{3}$ units to the right
 and that $\mathbf{- 3}$ means move $\mathbf{3}$ units to the left.

3. ${ }^{+} 3$ and -3 are called OPPOSITES
${ }^{-} 3$ is the opposite of ${ }^{+} 3$ and ${ }^{+} 3$ is the opposite of ${ }^{-} 3$
And opposites add to zero ie $\quad \mathbf{3}+\mathbf{+} \mathbf{3}=\mathbf{0}$
4. Students find it very tedious drawing number lines to show additions so I suggest you give them the sheet of prepared number lines to stick in their books, called "ADDING INTEGERS" to teach the idea covering all cases of ${ }^{ \pm} \boldsymbol{a}+{ }^{ \pm} \boldsymbol{b}$.

ADDING INTEGERS.

This diagram shows us WHY

$$
\begin{aligned}
& { }^{+} \mathbf{5}+{ }^{-} \mathbf{3}={ }^{+} \mathbf{2} \text { using a number line. } \\
& \xrightarrow[4-2]{\longleftrightarrow} \\
& \begin{array}{lllllllllll}
4 & 3 & 2 & -1 & 0 & +1 & + & +3 & +4 & +5
\end{array}
\end{aligned}
$$

ALWAYS START FROM ZERO

On the following number lines, show HOW the results can be obtained.
a. ${ }^{+} \mathbf{2}+{ }^{+} \mathbf{3}=+5$

b.

c. ${ }^{+} \mathbf{4}+{ }^{-} \mathbf{1}={ }^{+} \mathbf{3}$

d.

e. ${ }^{-4}+{ }^{+} \mathbf{3}=-\mathbf{1}$

| -4 | -3 | -2 | -1 | 0 | ${ }^{+} 1$ | ${ }^{+} 2$ | ${ }^{+} 3$ | ${ }^{+} 4$ | ${ }^{+} 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTE:
${ }^{+} \mathbf{2}+{ }^{+} 3$
is best thought of as
+2 followed by +3

BASICALLY WE ARE TREATING ADDITION OF INTEGERS JUST LIKE ADDITION OF VECTORS WHERE THE DIRECTION IS CRUCIAL.

They probably do linear vector problems similar to this in Science.
5. SUBTRACTION. We should try to get the idea that ${ }^{+} 6-{ }^{+} 4$ is really the same as ${ }^{+} 6+{ }^{-} 4$ ie subtracting is adding the opposite.

It is quite instructive to think of " + " to mean " followed by " and to think of " - " to mean "followed by the opposite of ".

In the same way that ${ }^{+} 6+{ }^{-} 4$ is better thought of as ${ }^{+} 6$ followed by ${ }^{-} 4$ we can think of ${ }^{+} 6-{ }^{+} 4$ as ${ }^{+} 6$ followed by the opposite of ${ }^{+} 4$

This idea covers the idea of the double negative beautifully:
Eg. ${ }^{+} 4-{ }^{-} 3$ becomes ${ }^{+} 4$ "followed by the opposite" of ${ }^{-} 3$ which is ${ }^{+} 4$ and ${ }^{+} \mathbf{3}={ }^{+} 7$

Perhaps instead of "followed by" you could just use "and ", and instead of "followed by the opposite of " you could just use "and the opposite of ". egs
a. ${ }^{+5}-{ }^{+} 3$ think of: ${ }^{+} 5$ and opposite of ${ }^{+} 3={ }^{+} 2$
b. ${ }^{+5}-{ }^{+} 7$ think of: ${ }^{+5}$ and opposite of ${ }^{+} 7={ }^{-} 2$
c. $-2-{ }^{+} 3$ think of: -2 and opposite of ${ }^{+} 3=-5$
d. ${ }^{-} 2-{ }^{-} 6$ think of: ${ }^{-} 2$ and opposite of ${ }^{-} 6={ }^{+} 4$
e. $-8-3$ think of -8 and opposite of $-3=-5$
6. Students will keep trying to MAKE UP THEIR OWN RULES in cases like these.

Their "rules" often do NOT work properly!
Watch out for people who try to use things like:
Positive + Negative $=$ Negative or something similar !!!
Show clearly there is no such rule because:
${ }^{+} 6+{ }^{-} 2={ }^{+} 4$ ie Pos + Neg $=$ Pos this time
but ${ }^{+} 6+{ }^{-} 10=-4$ ie $\operatorname{Pos}+\mathbf{N e g}=$ Neg this time.
7. However we DO need to make rules for multiplication and division.

I like to do it in a very logical way as follows:
(a) ${ }^{+} \mathbf{3} \times{ }^{+} \mathbf{4}$ or just $\mathbf{3} \times \mathbf{4}$ MEANS $\mathbf{3}$ lots of $\mathbf{4}=\mathbf{4 + 4 + 4}=\mathbf{1 2}$
from which we deduce the obvious that POSITIVE \times POSITIVE $=$ POSITIVE
$\left\{\begin{array}{l}\text { also }{ }^{+} \mathbf{4} \times{ }^{+} \mathbf{3} \text { or just } \mathbf{4 \times 3} \text { MEANS } 4 \text { lots of } 3=3+3+3+3=12 \\ \text { so } \quad \mathbf{4 \times 3} \text { and } \mathbf{3 \times 4} \underline{\text { mean different things but both come to } 12}\end{array}\right\}$
(b) Consider ${ }^{+} \mathbf{3} \times{ }^{-\mathbf{5}}$ which means ${ }^{-5} \mathbf{~}^{-\mathbf{5}}+{ }^{-\mathbf{5}}={ }^{-15}$
from which we deduce the obvious that POSITIVE \times NEGATIVE $=$ NEGATIVE
(c) Now consider ${ }^{-5} \times^{+} \mathbf{3}$. We can't think of ${ }^{-5}$ lots of ${ }^{+} 3$ but we can turn it around as in part (a) and call it ${ }^{+} \mathbf{3} \times{ }^{-\mathbf{5}}={ }^{-} \mathbf{1 5}$
from which we deduce the obvious that NEGATIVE \times POSITIVE $=$ NEGATIVE

BUT before we continue, it is useful to think of ${ }^{-5} \times \mathbf{}$ +
as : "the opposite"of $5 \times{ }^{+} 3=$ "the opposite"of $15={ }^{-15}$
(d) Lastly, consider -4×-5

Think of "opposite" of $4 \times{ }^{-5}$ $=$ "opposite "of $\quad-20$ $={ }^{+} 20$

This seems a tricky point but well worth doing. - 20)
from which we deduce that NEGATIVE \times NEGATIVE $=$ POSITIVE

A real PROOF that ${ }^{-} \boldsymbol{a} \times{ }^{-} \boldsymbol{b}={ }^{+} \boldsymbol{a} \cdot \boldsymbol{b}$ is really too hard for young students but here it is:

Obviously	$\boldsymbol{b}+{ }^{-} \boldsymbol{b}=\boldsymbol{0}$
So	$-\boldsymbol{a}\left(\boldsymbol{b}+{ }^{-} \boldsymbol{b}\right)=\boldsymbol{0}$
Expanding	$-\boldsymbol{a} \times \boldsymbol{b}+{ }^{-} \boldsymbol{a} \times{ }^{-} \boldsymbol{b}=\boldsymbol{0}$
$\boldsymbol{B u t}$	$-\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{a} \times \boldsymbol{b}=\mathbf{0}$

This shows us that the opposite of ${ }^{-} \boldsymbol{a} \times \boldsymbol{b}$ is ${ }^{-} \boldsymbol{a} \times{ }^{-} \boldsymbol{b}$
but we know that the opposite of ${ }^{-} \boldsymbol{a} \times \boldsymbol{b}$ is $\boldsymbol{a} \times \boldsymbol{b}$
so ${ }^{-} a \times{ }^{-} b$ must equal $a \times b$

Since we know that $\mathbf{6} \div \mathbf{2}$ is really the multiplication $\mathbf{6 \times 1 / 2}$ we can say that the same 4 rules apply to division too.
$\left.\begin{array}{rl}\text { ie } \begin{array}{l}\text { Pos } \div \text { Pos }=\text { Pos } \\ \text { Pos } \div \text { Neg }=\text { Neg } \\ \text { Neg } \div \text { Pos }=\text { Neg } \\ \text { Neg } \div \text { Neg }=\text { Pos }\end{array}\end{array}\right\} \quad$ as well as : $\quad\left\{\begin{array}{l}\text { Pos } \times \text { Pos }=\text { Pos } \\ \text { Pos } \times \text { Neg }=\text { Neg } \\ \text { Neg } \times \text { Pos }=\text { Neg } \\ \text { Neg } \times \text { Neg }=\text { Pos }\end{array}\right.$

We constantly need to reinforce that they should NOT apply these rules to addition.

A common mistake is to shorten the rule to " 2 negatives make a positive"! You need to reinforce $\mathbf{- 4} \times{ }^{-\mathbf{5}}={ }^{+} \mathbf{2 0}$ BUT ${ }^{-4+5}=\mathbf{- 9}$
8. Substitution problems can be quite instructive in themselves.

Suppose $\boldsymbol{a}=\mathbf{6}, \boldsymbol{b}=\mathbf{- 2}, \boldsymbol{c}=\mathbf{- 5}$
Apart from finding the usual, $\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{b}+\boldsymbol{c}, \boldsymbol{a}-\boldsymbol{b}, \boldsymbol{b}-\boldsymbol{c}$ etc.
Students should see things like ${ }^{-} \boldsymbol{a}$ which should be read as "the opposite of" $\boldsymbol{a}={ }^{-6}$ and ${ }^{-} \boldsymbol{c}$ which should be read as "the opposite of" $\boldsymbol{c}={ }^{+} 5$
9. The difference between -4^{2} which is ${ }^{-16}$ and $(-4)^{2}$ which is ${ }^{+} 16$, is very important particularly when working out \boldsymbol{y} values such as :

$$
\begin{aligned}
y & =6 x-x^{2} \quad \text { when } x=-4 \\
& =6 \times-4-(-4)^{2} \\
& =-24-\left({ }^{+} 16\right) \\
& =-40
\end{aligned}
$$

The idea that -4^{2} has "implied brackets" is difficult to grasp. ie $-\left(4^{2}\right)$
(NB If students just type -4^{2} on a calculator they will get -16)
10. In multiplications, the idea that "an EVEN number of negatives means the answer is positive and an ODD number of negatives means a negative answer", takes a while for some students to grasp but it makes a good class discussion time discovering this idea.
ie ${ }^{-} 4 \times{ }^{-} 3 \times{ }^{-} 5 \times 2 \times 1={ }^{-} \mathbf{1 2 0}$ but ${ }^{-} 4 \times-3 \times{ }^{-} 5 \times 2 \times{ }^{-} 1={ }^{+} \mathbf{1 2 0}$
and $\left({ }^{-} 1\right)^{25}={ }^{-} \mathbf{1}$ but $\left({ }^{-} 1\right)^{26}={ }^{+} \mathbf{1}$

