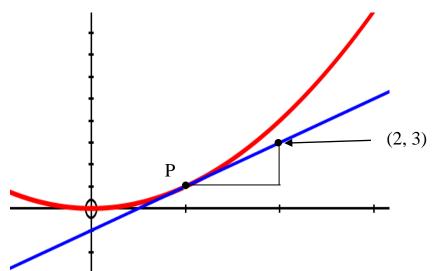
FINDING THE EQUATION OF A TANGENT TO A CURVE FROM A POINT NOT ON THE CURVE.

1. Find the equation of the tangent to $y = x^2$ from the point (2, 3)



In questions like this we do not know the coordinates of the point P where the tangent touches the curve.

If we let the x coordinate of P be a then the y coordinate will be a^2 (*ie* $y = x^2$) Using the gradient triangle drawn above we can say that the gradient of the tangent using points (2, 3) and (a, a^2) will be $\frac{3-a^2}{2-a}$

We can find another value for the gradient at P by differentiating $y = x^2$ Gradient y' = 2x and if x = a at P then the gradient of the tangent is 2aEquating these two values we get : $2a = 3 - a^2$

$$-\frac{3-a}{2-a}$$

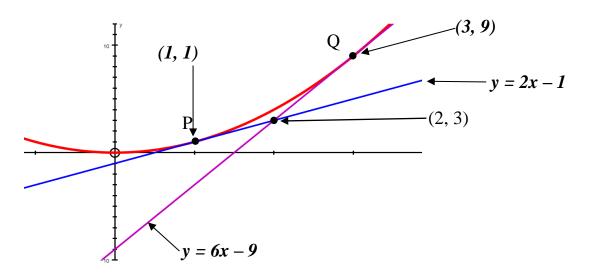
So that
$$2a(2-a) = 3 - a^{2}$$

 $4a - 2a^{2} = 3 - a^{2}$
 $0 = a^{2} - 4a + 3$
 $0 = (a - 1)(a - 3)$
 $a = 1 \ OR \ a = 3$

This means there are TWO possible tangents from (2, 3) to the curve.

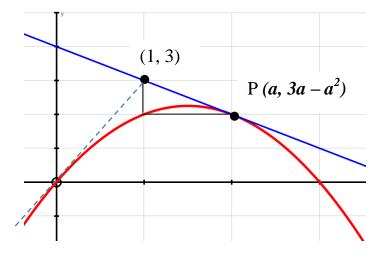
If a = 1 then P would be (1, 1), the gradient would be m = 2 and using y = mx + c substituting m = 2, x = 1, y = 1 we get c = -1The tangent drawn in the above diagram is y = 2x - 1

If a = 3 then P would be (3, 9), the gradient would be m = 6 and using y = mx + c substituting m = 6, x = 3, y = 9 we get c = -9The other tangent drawn in the diagram below is y = 6x - 9



This shows the TWO tangents from (2, 3) to the parabola $y = x^2$

2. Find the equation of the tangents to $y = 3x - x^2$ from the point (1, 3)

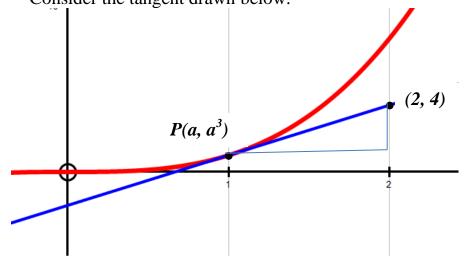


Let P be the point where the tangent from (1, 3) touches the curve so the coordinates of P, are $(a, 3a - a^2)$.

Using the gradient triangle shown, the gradient of the tangent in terms of *a* is: $-(3-3a+a^2)$

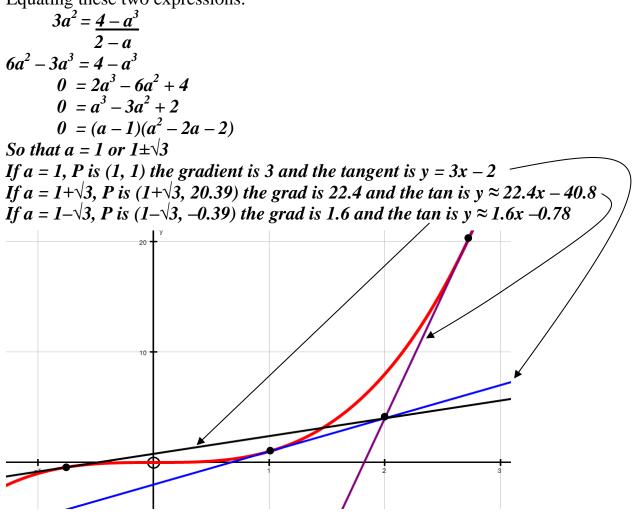
(a-1)Differentiating y' = 3 - 2x = 3 - 2a so equating these forms: $3-2a = -\frac{(3-3a+a^2)}{(a-1)}$ $3a-3-2a^2+2a = 3a-3-a^2$ $0 = a^2-2a$ So a = 0 or 2 If a = 2 then P is (2, 2) and the tangent equation is y = -x + 4

If a = 0 then P is (0, 0) and the other tangent equation is y = -x + 4If a = 0 then P is (0, 0) and the other tangent equation is y = 3x (see dotted line) **3. Find the equation of the tangents to** $y = x^3$ from the point (2, 4) It will become apparent that there are actually THREE tangents! Consider the tangent drawn below:

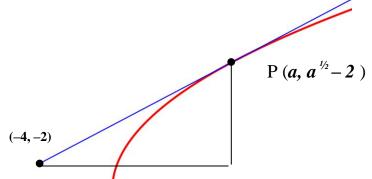


Let the coordinates of the point where the tangent meets the curve be (a, a^3) Using the gradient triangle, the gradient of the tangent is $\frac{4-a^3}{2-a}$

Differentiating, we get $y' = 3x^2 = 3a^2$ Equating these two expressions:



4. Find the equation of the tangent to $y = x^{\frac{1}{2}} - 2$ from the point (-4, -2) The graph is like this diagram...



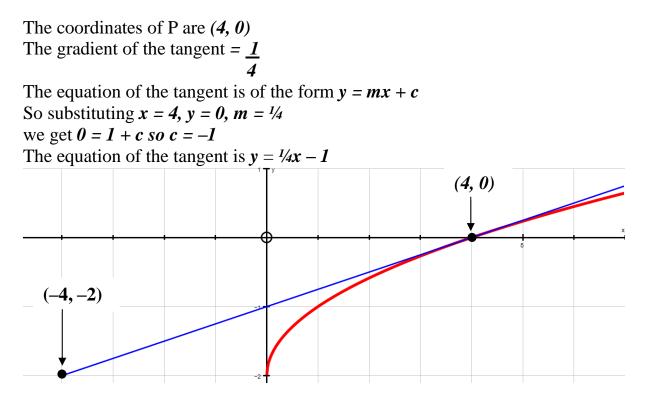
Let the tangent meet the curve at x = a so $y = a^{\frac{1}{2}} - 2$

From the gradient triangle, the gradient of the tangent = $\frac{a^{\frac{1}{2}} - 2 + 2}{a + 4} = \frac{a^{\frac{1}{2}}}{a + 4}$

If $y = x^{\frac{1}{2}} - 2$ then $y' = \frac{1}{2x^{\frac{1}{2}}}$ so at x = a, the gradient of the tan is $= \frac{1}{2a^{\frac{1}{2}}}$

Equating these two expressions we get: $\underline{a}^{\frac{1}{2}} = \underline{1}$

	a+4	$2a^{2}$
hence	2a	= a + 4
so that	a	<i>= 4</i>



4. Find the equation of the tangents to $y = x^4 - 6x^2$ from the point (0, 3)

Let the tangent meet the curve at x = a so $y = a^4 - 6a^2$

From the gradient triangle, the gradient of the tangent = $\underline{a^4 - 6a^2 - 3}$

If $y = y = x^4 - 6x^2$ then $y' = 4x^3 - 12x$ so at x = a, the gradient of the tangent is $= 4a^3 - 12a$

Equating these two expressions we get: $a^4 - 6a^2 - 3 = 4a^3 - 12a$

so
$$a^4 - 6a^2 - 3 = 4a^4 - 12a^2$$

hence

$$0 = 3a^{4} - 6a^{2} + 3$$

$$0 = 3(a^{2} - 1)(a^{2} - 1)$$

So $a = 1$ or -1

If *a* = 1:

The coordinates of P are (1, -5)The gradient of the tangent = -8The equation of the tangent is of the form y = mx + cSo substituting x = 1, y = -5, m = -8 we get -5 = -8 + c so c = 3The equation of the tangent is y = -8x + 3<u>If a = -1:</u> The coordinates of P are (-1, -5)The gradient of the tangent = +8The equation of the tangent is of the form y = mx + cSo substituting x = -1, y = -5, m = +8 we get -5 = -8 + c so c = 3The equation of the tangent is y = +8x + 3

