WHY IS 2^{0} EOUAL TO 1?

When I first see my Calculus class each year, I tell them I am going to show them the difference between KNOWING something and UNDERSTANDING it.
I then ask them, "Who knows what 2^{0} equals?"
Most people do KNOW that $2^{0}=1$, however, when I say:
"Who knows WHY $2^{0}=1$?" NOBODY can explain to me WHY.
I then go through some very basic work on indices and, after a few minutes, they can all explain to me WHY $\mathbf{2}^{0}$ equals 1 .
They can also explain $\boldsymbol{W H Y} \mathbf{2}^{-3}=\frac{1}{8}$
This is a very worthwhile exercise and I tell them that from now on, I expect them to not just know HOW to do problems but to be able to explain WHY the methods work.

This is basically how I proceed:
We know that \boldsymbol{b}^{3} means $\boldsymbol{b} \times b \times b$
and b^{2} means $b \times b$
and b^{1} means b
but b^{0} does not seem to make any sense and b^{-1} seems to make even less sense.

Using what we DO know: $b^{3} \times b^{2}$ means $b \times b \times b \times b \times b=b^{5}$
So we see that we do not need to write all the b's out, we could just generalise and put $b^{17} \times b^{13}=b^{17+13}=b^{30}$
and so $b^{n} \times b^{p}=b^{(n+p)}$
Similarly, $\quad \frac{b^{5}}{b^{3}}=\frac{b \times b \times b \times b \times b}{b \times b \times b}=b \times b=b^{2}$ by cancelling out where the $\frac{b}{b}=1$
We can generalise here too so that $\frac{b^{18}}{b^{14}}=b^{18-14}=b^{4}$

$$
\text { and so } \frac{b^{n}}{b^{p}}=b^{n-p}
$$

Now this SEEMS to be fine as long as $\boldsymbol{n}>\boldsymbol{p}$

Suppose we want $\frac{b^{3}}{b^{3}}$
If we use the rule above, we get an unusual answer $\frac{b^{3}}{b^{3}}=b^{3-3}=b^{0}$?
but if we work it out using the fundamental logic we get $\frac{b^{3}}{b^{3}}=\frac{b \times b \times b}{b \times b \times b}=1$
The LOGICAL conclusion is that b^{0} MUST be 1

Similarly, suppose we want $\frac{b^{3}}{b^{5}}$
If we use the rule above, we get an unusual answer $\frac{b^{3}}{b^{5}}=b^{3-5}=b^{-2}$?
but if we work it out using the logic we get $\frac{b^{3}}{b^{5}}=\frac{b \times b \times b}{b \times b \times b \times b \times b}=\frac{1}{b^{2}}$
The LOGICAL conclusion is that b^{-2} MUST be $\frac{1}{b^{2}}$

Now we have a meaning for " b " to the power of any INTEGER.
b^{3} means $b \times b \times b$
b^{2} means $b \times b$
b^{1} means b
b^{0} means 1
b^{-1} means $\frac{1}{b}$
b^{-2} means $\frac{1}{b^{2}}$
b^{-3} means $\frac{1}{b^{3}}$
Incidentally, if we know that $b^{n} \times b^{p}=b^{(n+p)}$ we can consider indices which are fractions.

Consider $9^{1 / 2} \times 9^{1 / 2}=9^{1 / 2+1 / 2}=9^{1}$ but $3 \times 3=9$
so $9^{1 / 2}$ must be $\sqrt{ } 9$ which is 3
Similarly $8^{1 / 3} \times 8^{1 / 3} \times 8^{1 / 3}=8^{1}$
but $2 \times 2 \times 2=8$
so $8^{1 / 3}$ must be the cube root of 8
NOTE: for most students a NUMERICAL verification is far more meaningful than a so called "rigorous" proof.

There are many posters like the following:

$$
\begin{aligned}
& b^{n} \times b^{p}=b^{n+p} \\
& \frac{b^{n}}{b^{p}}=b^{n-p} \\
& b^{1 / 2}=\sqrt{ } b
\end{aligned}
$$

but I would much rather see posters like the following:

$$
\frac{b^{3}}{b^{3}}=b^{3-3}=b^{0}
$$

$$
\begin{aligned}
& \frac{b^{3}}{b^{5}}=b^{3-5}=b^{-2} \\
& \frac{b^{3}}{b^{5}}=\frac{b \times b \times b}{b \times b \times b \times b \times b}=\frac{1}{b^{2}}
\end{aligned}
$$

$$
\text { so } b^{-2} \text { MUST be } \frac{1}{b}^{2}
$$

$\boldsymbol{b}^{1 / 2} \times b^{1 / 2}=b^{1}$
$\sqrt{ } \boldsymbol{b} \times \sqrt{ } b=b$
So $b^{1 / 2}$ must $b e \sqrt{ } b$

