THE FACTOR AND REMAINDER THEOREMS.

It is sad that for a huge majority of people these theorems consist merely of two almost mysterious rules!
You will find that students can quote things like "If $(x-2)$ is a factor of $f(x)$ then $f(2)=0$ " and "If $f(x)$ is divided by $(x-3)$ then the remainder is $f(3)$ " but ask them WHY and they will be at a loss for words.

The Factor Theorem:

Suppose $f(x)=(x-1)(x-2)(x-3)$
This represents a cubic graph which crosses the \boldsymbol{x} axis at $\boldsymbol{x}=1,2$ and $\mathbf{3}$

Expanding $f(x)=x^{3}-6 x^{2}+11 x-6$
Obviously the only 3 times $f(x)$ can be zero
 are where the graph crosses the \boldsymbol{x} axis at $\boldsymbol{x}=1,2$ and 3 .

Comparing the two versions of $f(x)$
$f(x)=x^{3}-6 x^{2}+11 x-6$
$f(x)=(x-1)(x-2)(x-3)$
If we substitute $x=1$ then $f(1)=(0) \times(1-2) \times(1-3)=0$
If we substitute $x=2$ then $f(2)=(2-1) \times(0) \times(2-3)=0$
If we substitute $x=3$ then $f(3)=(3-1) \times(3-2) \times(0)=0$
For any polynomial $g(x)$ it should be obvious to say that if $g(5)=0$ then $g(x)$ MUST equal $(x-5) \times($ something $)$

This would make a suitable poster for a classroom:

FACTOR THEOREM EXPLAINED.

$$
\text { Let } \boldsymbol{F}(x)=x^{3}+a x^{2}+b x+c
$$

If we try $\boldsymbol{x}=4$ and we find that $\boldsymbol{F}(4)=0$ then $\boldsymbol{F}(x)$ must equal $(x-4) \times($ something)
ie If $F(4)=0$ then $(x-4)$ is a factor of $F(x)$

The RemainderTheorem:

Consider this long division:

$$
\begin{aligned}
& x-2 \begin{array}{l}
x^{2}+3 x+7 \\
x^{3}+x^{2}+x+4 \\
\frac{x^{3}-2 x^{2}}{3 x^{2}}+x \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\hline x^{2}-6 x \\
7 x+18
\end{array} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { This could be written as: } \\
& \begin{array}{l}
\frac{x^{3}+x^{2}+x+4}{(x-2)}=x^{2}+3 x+7+\frac{18}{(x-2)} \\
\quad \text { OR } \\
x^{3}+x^{2}+x+4=(x-2)\left(x^{2}+3 x+7\right)+18
\end{array}
\end{aligned}
$$

We say that 18 is the REMAINDER

Consider these two versions of $\boldsymbol{f}(\boldsymbol{x})$:
(a) $f(x)=x^{3}+x^{2}+x+4$
(b) $f(x)=(x-2)\left(x^{2}+3 x+7\right)+18$

If we substitute $x=2$ in (a) we get $f(2)=8+4+2+4=18$
If we substitute $x=2$ in (b) we get $f(2)=(0) \times(4+6+7)+18=18$
Clearly the remainder after dividing by $(x-2)$ is simply $f(2)=18$
If we were to divide the same function by $(x-1)$ we could write it as: $f(x)=x^{3}+x^{2}+x+4=(x-1) \times($ something $)+R$
Substituting $x=1: \quad 1+1+1+4=(0) \times($ something $)+R$
The remainder R would be $f(1)=1+1+1+4=7$
Generally, if $f(x)$ is divided by $(x-a)$
Then $f(x)=(x-a) \times($ something $)+\boldsymbol{R}$ where \boldsymbol{R} is the remainder.
so on substituting $x=a$ we would get $f(a)=(0) \times($ something $)+\boldsymbol{R}$

This would make a suitable poster for a classroom:

REMAINDER THEOREM EXPLAINED.

$$
\text { Let } \boldsymbol{F}(x)=x^{3}+a x^{2}+b x+\boldsymbol{c}
$$

If we divide $F(x) b y(x-5)$ and the remainder is $\mathbf{1 2}$ then $F(x)$ must equal $(x-5) \times($ something $)+12$
so $F(5)=(0) \times($ something $)+12=12=$ the remainder.

