THE FACTOR AND REMAINDER THEOREMS.

It is sad that for a huge majority of people these theorems consist merely of two almost mysterious rules!

You will find that students can quote things like "If (x - 2) is a factor of f(x) then f(2) = 0" and "If f(x) is divided by (x - 3) then the remainder is f(3)" but ask them WHY and they will be at a loss for words.

The Factor Theorem:

Suppose f(x) = (x - 1)(x - 2)(x - 3)This represents a cubic graph which crosses the x axis at x = 1, 2 and 3

Expanding $f(x) = x^3 - 6x^2 + 11x - 6$

Obviously the only 3 times f(x) can be zero are where the graph crosses the x axis at x = 1, 2 and 3.

Comparing the two versions of f(x) $f(x) = x^3 - 6x^2 + 11x - 6$ f(x) = (x - 1)(x - 2)(x - 3)

If we substitute x = 1 *then* $f(1) = (0) \times (1 - 2) \times (1 - 3) = 0$ *If we substitute* x = 2 *then* $f(2) = (2 - 1) \times (0) \times (2 - 3) = 0$ *If we substitute* x = 3 *then* $f(3) = (3 - 1) \times (3 - 2) \times (0) = 0$

For any polynomial g(x) it should be obvious to say that if g(5) = 0then g(x) MUST equal $(x - 5) \times (something)$

This would make a suitable poster for a classroom:

FACTOR THEOREM EXPLAINED.

Let $F(x) = x^3 + ax^2 + bx + c$

If we try x = 4 and we find that F(4) = 0then F(x) must equal $(x - 4) \times (something)$

ie If F(4) = 0 then (x - 4) is a factor of F(x)

The RemainderTheorem:

Consider this *long division:*

$$x-2 \quad \frac{x^2 + 3x + 7}{\sum x^3 + x^2 + x + 4}{\frac{x^3 - 2x^2}{3x^2 + x}}$$
This could be written as:
 $\frac{x^3 + x^2 + x + 4}{(x-2)} = x^2 + 3x + 7 + \frac{18}{(x-2)}$
OR
 $\frac{3x^2 - 6x}{7x + 4}$
 $\frac{7x - 14}{0 + 18}$
We say that 18 is the REMAINDER

Consider these two versions of f(x):

(a)
$$f(x) = x^3 + x^2 + x + 4$$

(b) $f(x) = (x-2)(x^2 + 3x + 7) + 18$

If we substitute x = 2 in (a) we get f(2) = 8 + 4 + 2 + 4 = 18If we substitute x = 2 in (b) we get $f(2) = (0) \times (4 + 6 + 7) + 18 = 18$

Clearly the **remainder** after dividing by (x - 2) is simply f(2) = 18

If we were to divide the same function by (x - 1) we could write it as: $f(x) = x^3 + x^2 + x + 4 = (x - 1) \times (something) + R$ Substituting x = 1: $1 + 1 + 1 + 4 = (0) \times (something) + R$ The remainder R would be f(1) = 1 + 1 + 1 + 4 = 7

Generally, if f(x) is divided by (x - a)Then $f(x) = (x - a) \times (something) + R$ where R is the remainder. so on substituting x = a we would get $f(a) = (0) \times (something) + R$

This would make a suitable poster for a classroom:

REMAINDER THEOREM EXPLAINED.

Let $F(x) = x^3 + ax^2 + bx + c$

If we divide F(x) by (x - 5) and the remainder is 12 then F(x) must equal $(x - 5) \times (something) + 12$

so $F(5) = (0) \times (something) + 12 = 12 = the remainder.$