How do I prove by induction?

Most students find induction to be very confusing!
I think a very simple example would be a good idea.
I realise we can easily show, using simple arithmetical series that the sum of the first \mathbf{n} counting numbers can be written as:

$$
\operatorname{Sum} S_{n}=\frac{n(n+1)}{2}
$$

Let's prove this by induction!
The first thing to do is to check that it is ever true!
If $n=1$ the formula comes to:

$$
S_{1}=\frac{1(1+1)}{2}=1
$$

The idea of induction is now to show that if it is true for \mathbf{n} numbers then the same formula holds for $\mathbf{n}+\mathbf{1}$ numbers.

This is the part students find it hard to grasp.
By adding the next number, which is $(\mathbf{n}+1)$, to the formula $\frac{n(n+1)}{2}$ we have to show that the formula changes from:

$$
S_{n}=\frac{n(n+1)}{2} \quad \text { into } \quad S_{n+1}=\frac{(n+1)((n+1)+1)}{2}
$$

$\ldots .$. .you see we have just replaced \boldsymbol{n} with $\boldsymbol{n}+\boldsymbol{1}$ in the above formula!

This is how we show it...
If the sum of n terms is $\frac{n(n+1)}{2}$
\ldots then the sum of $n+1$ terms should be... $\frac{n(n+1)}{2}+(n+1)$

$$
\begin{aligned}
& =(n+1)\left(\frac{n}{2}+1\right) \\
& =(n+1)\left(\frac{n}{2}+\frac{2}{2}\right) \\
& =(n+1)\left(\frac{(n+2)}{2}\right) \\
& =\frac{(n+1)((n+1)+1)}{2}
\end{aligned}
$$

So we have shown the formula is true when $\mathbf{n}=\mathbf{1}$ and we have shown that if it is true for n numbers then it is true for $\mathbf{n}+\mathbf{1}$ numbers.
This proves that it is always true.

