What is the difference between Δy over Δx and dy over dx
 When I first started to learn Calculus we used $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ a lot but in more recent times I have rarely seen $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ probably because of the obvious confusion it causes for young students.

To find the gradient of a curve, we imagine a microscopic section of the curve as shown:

Fundamental Idea: The steepness of tangent PT is approximately equal to the steepness of a chord PQ (where Q is a point on the curve very close to P).

This approximation gets closer to the gradient of the tangent at P as Q moves closer and closer to P.

In all my teaching I have use " \mathbf{h} " instead of " $\Delta \mathbf{x}$ " as shown in these diagrams

Fig 1.

Fig 2.

$\operatorname{Grad} \mathrm{PQ}_{2}=\frac{\mathrm{Q}_{2} \underline{R}}{\mathrm{PR}}$

Fig 3.

$\operatorname{Grad} \mathrm{PQ}_{3}=\frac{\mathrm{Q}_{3} \mathrm{R}}{\mathrm{PR}}$

This "geometrical idea" has to be changed into "mathematical symbols" so that we can find the numerical values of these gradients and work out what value they are approaching.

The "old fashioned" way using $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ looked like this...

Then we say that as $\Delta x \rightarrow 0$ the gradient AT POINT P is just 2 x
and the SYMBOL used for the gradient was $\frac{d y}{d x}=2 x$
This symbol was not considered to be an actual fraction! but $\underline{\mathbf{y}}$ is a fraction and equal to $\underline{\mathbf{Q R}}$ in the diagram above.
$\Delta \mathbf{x}$
PR
Now I have not written this out as above for many years and I find it very awkward and cumbersome!

Now for the "modern" way using " \mathbf{h} " instead of " Δx " (and we don't even use a symbol for " Δy ") ...

Then we say that as: $\mathbf{h} \rightarrow \mathbf{0}$ the gradient AT POINT P is just $\mathbf{2 x}$
and the SYMBOL used for the gradient is usually " $y^{\prime}=\mathbf{2 x}$ " although we still use $\underline{d y}=2 x$ of course.
dx
\qquad

